Quick Search

The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.

Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.

Electrodeposition on a Resistive Patterned Wafer

This example models time-dependent copper deposition on a resistive wafer in a cupplater reactor. As the deposited layer builds up, the resistive losses of the deposited layer decreases. The benefit of using a current thief for a more uniform deposit is demonstrated.

Geometric Parameter Optimization of a Tuning Fork

This model computes the fundamental eigenfrequency and eigenmode for a tuning fork that is synchronized from SolidWorks via the LiveLink interface. The length of the fork is then optimized so that the tuning fork sounds the note A, 440 Hz.

Beam Subjected to Traveling Load

This application simulates the transient response of a beam that is placed on several equidistant supports and is subjected to a traveling load. The purpose of the application is to analyze the response of the bridge when vehicles pass over the same. It is observed that for a bridge with given geometric and material properties, certain vehicular speeds cause resonance in the bridge and it ...

Geothermal Doublet

This is one of the two models from the blog post about heat transfer in the subsurface: https://www.comsol.de/blogs/coupling-heat-transfer-subsurface-porous-media-flow/ Note: Poroelasticity is not included here.

Pacemaker Electrode

This model, dealing with the current and potential distribution around one pair of electrodes, demonstrates how to synchronize and modify geometry in SolidWorks by using the LiveLink interface.

Electrode Growth Next to an Insulator

This example shows how to model secondary current distribution and electrode growth with a moving geometry. To avoid numerical instabilities, a seed layer is introduced in the initial geometry to obtain a right angle at the edge between the growing electrode and the insulator.

Biomechanical Model of the Human Body in a Sitting Posture

The dynamic response of a human body in any vibration environment can be predicted using this biomechanical model. In the automobile industry for instance, this model can be used in ride quality simulation and designing vibration isolators such as seats. In this example, a biomechanical model of the human body is developed to evaluate the dynamic response to the vertical vibrations in a ...

Designing a Waveguide Diplexer for the 5G Mobile Network

A diplexer is a device that combines or splits signals into two different frequency bands, widely used in mobile communication systems. This model simulates splitting properties using a simplified 2D geometry. The computed S-parameters and electric fields at the lower and upper bands will show the diplexer characteristics in the Ka-band.

Ion Funnel

An electrodynamic ion funnel provides an efficient means of transferring ions from regions of high pressure to high vacuum. The ion funnel can couple devices which generally operate at pressures of different orders of magnitude, such as ion mobility spectrometers and mass spectrometers, allowing mixtures of ionized gases to be separated and analyzed while minimizing losses. This model ...

Axial Homopolar Induction Bearing in 3D

This model illustrates the working principle of an axial homopolar induction bearing. An electrically conducting rotor rotating in a magnetic field produced by a permanent magnets induces eddy currents on the conducting rotor. The eddy currents, in turn, produce a magnetic field that opposes the magnetic fields by the magnets and induces a force that opposes the motion of the rotor. The axial ...