See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

Modeling of Noise Produced by Offshore Wind Turbines with Different Foundations and Effects on the Marine Environment

B. Marmo [1], I. Roberts [1]
[1]Xi Engineering Consultants, Edinburgh, Scotland, UK

Vibration produced by offshore wind turbines during their normal operation transmits through the tower into the foundation where it interacts with the surrounding water and is released as noise. The noise produced by offshore wind turbines can be detected by fish and marine mammals and ... Read More

Simple Finite Element Model of the Topografiner

H. Cabrera[1], D. A. Zanin[1], L. G. De Pietro[1], A. Vindigni[1], U. Ramsperger[1], D. Pescia[1]
[1]Laboratory for Solid State Physics, ETH Zürich, Zürich, Switzerland

In our recent experiments we are revisiting the topografiner technology for the imaging of surface topography with a resolution of a few nanometers. In these new technique called Near-Field Emission Scanning Electron Microscopy (NFESEM), low-energy electrons are emitted from a ... Read More

Void Shape Evolution of Silicon: Level-Set Approach

C. Grau Turuelo[1], C. Breitkopf[1]
[1]Technische Universität Dresden, Dresden, Germany

The void shape evolution of silicon is a process driven mainly by surface diffusion which leads to a geometrical transformation of trenches etched in silicon wafers due to surface energy minimization. The temperature, the ambient gas and the annealing time affect the velocity of the ... Read More

Heterodimensional Charge-Carrier Confinement in Sub-Monolayer InAs in GaAs

S. Harrison[1], M. Young[1], M. Hayne[1], P. D. Hodgson[1], R. J. Young[1], A. Strittmatter[2], A. Lenz[2], U. W. Pohl[2], D. Bimberg[2]
[1]Department of Physics, Lancaster University, Lancaster, UK
[2]Institut für Festkörperphysik, Berlin, Germany

Low-dimensional semiconductor nanostructures, in which charge carriers are confined in a number of spatial dimensions, are the focus of much solid-state physics research, offering superior optical and electronic properties over their bulk counterparts. Both two-dimensional (2D) and zero ... Read More

Web-Based 3D Visualization for COMSOL Multiphysics® Software

S. Grabmaier[1], M. Jüttner[1], W. M. Rucker[1]
[1]University of Stuttgart – Institute for Theory of Electrical Engineering, Stuttgart, Germany

A web based visualization solution for three dimensional simulation results of COMSOL Multiphysics® is described. With it, mobile clients with low bandwidth as well as desktop computers with high bandwidth connections get able to show simulation results without the need of installing ... Read More

Optimization of Jet Mixer Geometry and Mixing Studies

A. Egedy[1], B. Molnar[1], T. Varga[1], T. Chován[1]
[1]Department of Process Engineering, University of Pannonia, Veszprém, Hungary

The primary aim of using jet as mixer, like in case of other mixing devices, is to increase the heat and mass transfer between the phases. Beside the injection position the geometry of the jet mixer and the injection nozzle has a major effect on the injection. In our study COMSOL ... Read More

Rheological and Topographical Controls on Deformation Due to a Shallow Magma Reservoir

J. H. Johnson[1]
[1]University of Bristol School of Earth Sciences, Bristol, UK

The use of high-resolution topography in the finite element model demonstrates that deformation from a shallow pressure source can be dramatically affected by overlying relief, not only in magnitude, but also in azimuth. This result is significant as it allows traditionally anomalous ... Read More

Sound Field Analysis of Monumental Structures by the Application of Diffusion Equation Model

Z. S. Gul[1], N. Xiang[2], M. Caliskan[3]
[1]Department of Architecture, Middle East Technical University, Ankara, Turkey
[2]School of Architecture, Rensselaer Polytechnic Institute, Troy, NY, USA
[3]Department of Mechanical Engineering, Middle East Technical University, Ankara, Turkey

Sound energy distribution patterns within enclosed spaces are the basic concerns of architectural acoustics. Energy decays are analyzed for major acoustical parameter estimations, while spatial energy distribution and flow vectors are indicative in the analysis of sound energy ... Read More

Numerically Closing the Loop of the Adaptive Optics Sensor: the Validation of the COMSOL Multiphysics® Simulation

C. Del Vecchio[1], R. Briguglio[1], A. Riccardi[1]
[1]National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

As any other modelling of a physical behavior, the numerical simulation of the mechanical response of an adaptive secondary mirror requires that the results match the experimental data. Such an agreement was recently demonstrated for the local mirror stiffness of the LBT and VLT ... Read More

Control of Real Distributed Parameter Systems Modeled by COMSOL Multiphysics® Software

C. Belavý[1], G. Hulkó[1], S. Lipár[1], B. Barbolyas[1]
[1]Institute of Automation, Measurement and Applied Informatics, Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava, Bratislava, Slovak Republic

In the paper, first a basic concept of the engineering approach for modeling and control of distributed parameter systems (DPS) based on interpretation of controlled systems as lumped input and distributed output systems (LDS) is introduced. Next, FEM modeling of temperature fields in ... Read More