Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Quantitative Analysis Design of MEMS Based Micropreconcentrator for Cancer Diagnosis

Sang-Seok LEE[1]

[1] Tottori University, Tottori, Tottori, Japan

We have proposed a high performance MEMS based microstructure array of micropreconcentrator (microPC) for breath diagnosis of cancer biomarkers. Our microPC has been designed based on quantitative analysis results, which gives explicit evaluation criteria for determination of microstructure array performance. We will present the quantitative analysis results performed by COMSOL Multiphysics ...

A Study on Estimation of Permittivity Distribution using a Genetic Algorithm and COMSOL® Java API

[1]Kazuyoshi TOMIYAMA et al.

Chiba Institute of Technology, Narashino, Chiba, Japan[1]

The numerical model can be dynamically modified and analyzed by using the COMSOL Java API. We estimated the relative permittivity, diameter and position of the dielectric in a experiment device based on the electric potential and the capacitance of experimental results. The estimation method was developed by the COMSOL Java API and Genetic Algorithm. In this presentation, we will introduce a ...

Simulation of Beam Propagation with Two-photon Absorption in Semiconductor Materials

Syuhei LEE et al.[1]

[1]Chiba University, Chiba, Chiba, Japan

We have studied ultrafast all-optical switching devices based on two-photon absorption, which are expected to have ultrafast response less than 1 ps in wideband and to be independent of polarization of light. In our laboratory, we have obtained the analytical solution for the equation of light propagation in our model that the two-photon absorption occurs in a sample. Though we have used the ...

Design of Guide for Avoiding Buckling Fracture of Micro Needle Inspired by Labium of Mosquito

Tomokazu TAKASAKI[1]

[1]Kansai University, Suita, Osaka, Japan

Making a diameter of needle small is effective for reducing the pain of patients. However, thinning a needle leads to easy buckling in the puncturing process, because the aspect ratio of needle becomes high. We propose a method for avoiding buckling of thin needle by setting a guide around it. This guide can limit the lateral displacement of needle, making the stress lower than material fracture ...

COMSOL Multiphysics® Simulation of Heat Generation from Hydrogen/Deuterium Loading of Nickel Alloy Nanoparticles - new

G. Miley[1], A. Osouf[1], B. Stunkard[1], T. Patel[1], E. Ziehm [1], A. Krishnamurthy[1], K. J. Kim[1]
[1]University of Illinois at Urbana Champaign, Champaign, IL, USA

A key issue for the development of a LENR power unit involves the measurement and energy output of the reaction. Our team is currently studying a gas loaded nanoparticle-type cluster power unit [1] which pressurizes various nanoparticle alloys with either deuterium or hydrogen. The principal elements in the various nanoparticle alloys are Nickel, Palladium and Zirconium, with each alloy ...

Princípio Calorimétrico Aplicado a Medição de Vazão - new

T. Cavalcanti[1], A. Lima[1], J. Neto[1]
[1]Universidade Federal de Campina Grande, Campina Grande, PB, Brasil

Introdução: A medição adequada de vazão de fluidos é de grande importância nos processos industriais, pois tem implicações diretas na qualidade, produtividade, segurança e eficiência dos processos. Assim, torna-se necessário compreendermos como os fluidos se comportam para baixas velocidades, podendo, dessa forma, projetar estruturas que possam trabalhar em uma faixa de operação mais larga ou ...

Two-dimensional Model of a Lithium Iron-Phosphate Single Particle

M. Cugnet [1][2],
[1] Université Grenoble Alpes INES, Le Bourget du Lac, France
[2] CEA, LITEN, Grenoble, France

Introduction: Lithium-ion batteries are widely used as power sources for portable electronic devices (laptop, phones, and players) and electric cars due to their high energy density. New applications, such as Formula E, require also a huge power capability that the iron-phosphate-based positive electrode is able to provide. Indeed, a recent publication [1] shows that, at the particle level (20 ...

Numerical Modeling of Solvent Enhanced Water Flooding

M. Chahardowli [1], R. Farajzadeh [2], H. Bruining [1],
[1] Delft University of Technology, Delft, The Netherlands
[2] Shell Global International Solutions, Den Haag, The Netherlands

Mutually soluble-solvents can improve the ultimate recovery in conventional reservoirs. Initially, the solvent moves with the imbibing aqueous phase into the reservoir. However, upon contact with oil, diffusion occurs and the solvent is transported in the oleic phase. Through the migration of the mutually soluble component from the aqueous phase into the oleic phase, oil properties and/or rock ...

Research and Development of Multiphysics Models in Support of the Conversion of the High Flux Isotope Reactor to Low Enriched Uranium Fuel

The findings presented in this report are results of a five-year effort led by the Research Reactors Division (RRD) of the Oak Ridge National Laboratory (ORNL), which is focused on research and development toward the conversion of the High Flux Isotope Reactor (HFIR) fuel from high-enriched uranium (HEU) to low-enriched uranium (LEU). This report focuses on the tasks accomplished by the ...

The Effect of Induced Electron Diffusion on the Optical Properties of Plasmonic Nanostructures

Changyin Ji [1], Qingfan Shi [1], Yongyou Zhang [1], Ning Zheng [1], Liangsheng Li [2]
[1] Beijing Institute of Technology, School of Physics, Beijing, China
[2] Science and Technology on Electromagnetic Scattering Laboratory, Beijing,China

Recently, the researchers usually use the hydrodynamic Drude model (HDM) to investigate the nonlocal optical response of metallic nanostructure. The advantage of the HDM is easy to implement numerical calculation for larger and more complex-shaped nanoplasmonic structures. For the HDM, it is predicted that the nonlocal response blueshifts the resonance peak, modifies the electric field ...