Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Elastoplastic Models of the Interaction between Active Fronts of the Southern Alps and Dinarides (NE Italy and NW Slovenia)

M. Coccia[1], E. Carminati[1], F. Rolandone[2], M. Battaglia[1], D. Zuliani[3], and P. Fabris[3]
[1]Università La Sapienza, Roma, Italy
[2]Université Pierre et Marie Curie, Paris, France
[3]Centro Ricerche Sismologiche, Udine, Italy

We use GPS measurements and Finite Element analysis to investigate strain accumulation in the interaction between active fronts of the Southern Alps and Dinarides at the northern edge of the Adriatic micro-plate. We develop a three dimensional model of the area taking into account the regional topography, approximating the crust as an elasto-plastic medium and reproducing as close as possible ...

Simulation of a Modular Die Stamp for Micro Impact Extrusion

A. Schubert[1][2], R. Pohl[1], and M. Hackert[1]
[1]Chair Micromanufacturing Technology, Faculty of Mechanical Engineering, Chemnitz University of Technology, Chemnitz, Germany
[2]Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

Micro impact extrusion is investigated at Chemnitz University of Technology as a potential procedure for large area machining of micro cavities within the scope of the SFB/Transregio 39 PT-PIESA of the German Research Foundation. Applying impact extrusion micro forming is done by material flow opposite to the effective direction of the force into the structure of the tool. Therefore no ...

Modeling and Analysis of a Feedback-Controlled Active Magnetic Levitation System using COMSOL Multyphysics Finite Element Software

M. Nabi[1], and K. V. Ajeeth[1]
Department of Electrical Engineering, Indian Institute of Technology Delhi, India

Magnetic levitation systems have been studied in the context of high-speed transportation as maglev trains, high speed machinery as magnetic bearings, and other similar engineering applications. In this paper, a three dimensional arbitrary shaped object is modeled and analyzed through COMSOL. Mechanically the levitated object has three degrees of freedom- two along the x and y axes and the ...

Modelling and Experimental Validation Possibilities of Heat Transfer Room Model

M. Zalesak, and V. Gerlich
Tomas Bata University in Zlin, Zlin, Czech Republic

The study presents first authors experience with COMSOL Multiphysics environment used as a possible modeling tool of thermal building behavior. The idea of the project was to gain thermal response to changed boundary conditions with the application of COMSOL environment as a modeling tool for 3D buildings or 3D building segments. The room as building segment was implemented in the COMSOL ...

Design Improvement Of A Bench-Scale Nanofiltration Device By CFD Study

B. Balannec[1,2], T. Renouard[1,2], and F.Cortès-Juan[3]
[1]Université de Rennes 1-ENSCR-CNRS, France
[2]Université européenne de Bretagne, France
[3]Universidad Politécnica de Valencia, Spain

Feasibility studies in the field of membrane processes are generally first carried out with bench-scale membrane filtration cells. These small laboratory cells also allow evaluating the influence of operational parameters and the membrane performances. Smart design of the cell geometry may improve the flow distribution and consequently the membrane filtration performances by increasing shear ...

Microsoft Technical Computing - The Advancement of Parallelism

T. Quinn
Microsoft, USA

Tom Quinn works as a Partner Business Development Manager for Microsoft as part of its HPC team working together with ISV, OEM and SI partners, in the HPC marketplace. Before joining Microsoft, Mr. Quinn worked as the Director of Government Business Development for Linux Networx, a small/mid-sized company that provides Linux Clusters, and earlier as Director of Operations and Business ...

Microsoft Technical Computing

H. Steepler
Microsoft, Sweden

Henrik Steepler earned his PhD in Computer Science in 1999 at Chalmers University, Sweden. Since 2003, he has been working at Microsoft on emerging markets like Security, Virtualization, and since 2007 on their High Performance Computing (HPC) initiative. He is now managing the partner network for Microsoft in Europe, the Middle East, and Africa around HPC.

Simulation of the Degradation of Methyl Red by Gliding Arc Plasma

S. Cavadias [1], B. Trifi [2], S. Ognier[1], and N. Bellakhal[3]
[1]Laboratoire de Génie des Procédés Plasma et Traitement de Surface, Ecole Nationale Supérieure de Chimie de Paris, Université Pierre et Marie Curie, Paris, France
[2]Laboratoire de Chimie Analytique et Electrochimie, Département de Chimie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisie
[3]Département de Chimie et de Biologie Appliquées, Institut National des Sciences Appliquées et de Technologie, B.P. N°676, 1080 Tunis Cedex, Tunis, Tunisie

The use of plasmas for the treatment industrial effluents provides a new alternative to the decontamination of wastewater. The strong oxidizing species (O,O3, OH) generated by the plasma, at room temperature, can oxidise organic pollutants present in the water. Our simulation deals with the degradation of methyl red by a Glidarc humid air plasma producing active species, mainly OH, that can ...

Deriving Correction Factors for a Primary Standard for Radiation Dosimetry

R. Tosh, and H. Chen-Mayer
NIST
Gaithersburg, MD

Accurate metrology of radiotherapeutic absorbed dose to water requires assessing the radiation induced temperature change. The most direct method for doing this is water calorimetry, for which the established technique involves the use of slender thermistor probes that are sealed within a glass vessel containing high-purity water. The probes and vessel perturb the radiation field, via ...

Numerical Modelling of Compact High Temperature Heat Exchanger

O. Smirnova, T. Fend, and D. Schöllgen
Institut of Solar Research in German Aerospace Agency
Cologne, Germany

For the numeric investigations of the high temperature compact heat exchanger two numeric models with and without the regards of the velocity field development were used. The results of the comparison of the numeric and experimental data confirm the necessity of regarding the velocity field development for the compact heat exchangers. The two-dimensional simulation task with the regard of the ...