Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Computational Analysis of the Mechanical and Thermal Stresses in a Thin Film PProDOT-Based Redox Capacitor

J. Sotero-Esteva[1], M. Rosario-Canales[2], P. Gopu[3], and J. Santiago-Avilés[3]

[1]Department of Mathematics, University of Puerto Rico at Humacao, Humacao, PR
[2]Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
[3]Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA

Among the several types of capacitors, the double-layer and redox types have gathered increasing attention to address some of the heavy power demands of modern technology. In redox capacitors, charge is stored chemically via oxidation/reduction processes in the active materials like electroactive polymers (EAPs) or metal oxides. This work investigates the stresses and heat flux of the electrode ...

Blistering of Industrial Floors on Concrete Substrate: The Role of Air Overpressure

P. Devillers[1], S.V. Aher[2], G. Fau[3], B. Tranain[3], and C. Buisson[1]
[1]Centre des Matériaux de Grande Diffusion, Ecole des Mines d’Alès, France
[2]Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
[3]Centre Scientifique et Technique du Bâtiment, Champs sur Marne, France

A three dimensional COMSOL Multiphysics, transient analysis, diffusion model has been adopted to model the transfers of water in the industrial concrete floors. To take into account the different initial saturation levels at the different levels of the slab, the model is divided into three subdomains. The rise of the waterfront is also simulated and the air overpressure thereby developed at the ...

Modeling Neural Tissue and Membrane Behavior During Far-field Current Injection

R. Sadleir[1], A. Minhas[2], and E.J. Woo[2]
[1]University of Florida, Gainesville, FL, USA
[2]Kyung Hee University, Seoul, Republic of Korea

In an earlier work we developed a finite element bidomain model of an aplysia abdominal ganglion in order to estimate the sensitivity of this contrast mechanism to changes in cell membrane conductance occurring during a gill-withdrawal reflex. We used our model to determine both current density and magnetic potential distributions within a sample chamber containing an isolated ganglion when it ...

Prediction of Time of Death Using a Heat Transport Model

J.L. Smart[1], and M. Kaliszan[2]
[1]University of Kentucky, Paducah, KY, USA
[2]Medical University of Gdansk, Gdansk, Poland

COMSOL Multiphysics® 4.0 was used to study conductive and convective heat transfer from the human eyeball to the surrounding air. Postmortem temperature decay curves were collected in eyeballs of numerous human corpses. Of course, these curves represent only a portion of the complete temperature decay curve, since the pathologist is able to start collecting temperature data only after some ...

Design Improvement Of A Bench-Scale Nanofiltration Device By CFD Study

B. Balannec[1,2], T. Renouard[1,2], and F.Cortès-Juan[3]
[1]Université de Rennes 1-ENSCR-CNRS, France
[2]Université européenne de Bretagne, France
[3]Universidad Politécnica de Valencia, Spain

Feasibility studies in the field of membrane processes are generally first carried out with bench-scale membrane filtration cells. These small laboratory cells also allow evaluating the influence of operational parameters and the membrane performances. Smart design of the cell geometry may improve the flow distribution and consequently the membrane filtration performances by increasing shear ...

Thermal and Laminar-Fluidic Workbench for a metric Portion of a Gun

M. Brun
Nexter Systems, Versailles, France

Part of a 120mm gun has been represented as a perforated conic iron solid, surrounded by an annular screen. Inside the gun are limit conditions of isolation or thermal flux. The screen is described as a shell, receiving solar heat and exchanging with the outside atmosphere. It bears a defined number of holes on its top and bottom lines, maintaining semi-captive air between itself and the gun. The ...

FEM-Investigations Of Superconductor/Ferromagnet Heterostructures: A Compliance Test Between Various Models

P. Krüger[1], F. Grilli[1], Y. Genenko[2], and R. Brambilla[2]
[1]Karlsruhe Institute of Technology, Germany
[2]Technical University Darmstadt, Germany, ERSE Spa, Milan, Italy

In recent years, a number of numerical and finite-element-methods in particular - some implemented in COMSOL - have been developed to investigate various properties of superconducting materials. Following converse conclusions by different models regarding similar physical phenomena, the consistency of these models has been of increased interest. In this publication the accordance of an ...

Numerical Modelling Of Sound Absorptive Properties Of Double-Porosity Granular Materials

R. Venegas, and O. Umnova
Acoustics Research Centre, University of Salford, Salford, United Kingdom

Granular materials have been conventionally used for acoustic treatment due to their sound absorptive and sound insulating characteristics. An emerging field is the study of acoustical properties of multi-scale porous materials. An example of these is a double-porosity granular material in which the grains are porous themselves. In this work, a computational methodology for modelling this type ...

Simulation of Interaction of Low-Temperature Plasma with Immersed Solids

V. Hrubý, and R. Hrach
Department of Surface and Plasma Science, Charles University, Prague, Czech Republic

The computer simulation with COMSOL Multiphysics has become a widely used technique for the study of various problems in the field of plasma physics. Despite the increasing performance of computers, fully three-dimensional particle simulations still have got extremely high demands on hardware and computer time. Although many problems could be solved by fluid models, results obtained by these ...

Using The Time Parameter As The Third Geometrical Dimension

J. Krah
AkerSolutions, Fornebu, Norway

The paper demonstrates that for some models a 2D geometry in Cartesian coordinates can be used to obtain a 3D solution with changes in z-direction. A heat exchanger serves as an example of a practical application. The required flow rate in a straight cooling pipe penetrating perpendicularly into a warm wall is calculated to keep the wall temperature below a given limit. Cold water pumped into the ...

Quick Search

3201 - 3210 of 3644 First | < Previous | Next > | Last