Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

基于声学超材料的菲涅尔声透镜

韩建宁 [1], 罗世通 [1],
[1] 中北大学,太原,中国

基于声学透镜的声学聚焦技术已经在医学检测及医学治疗中有着广泛应用,特别是在 HIFU 技术中有着重要的地位。虽然近几年声学聚焦技术已经有着很多的成果,但是由于“衍射极限”的问题,聚焦区域有一定的限制。声学超材料技术是当前物理领域的热点,该技术的相关成果和优势已经渗透到多个学科的研究中。本文为了更好地抓住学科交叉的技术优势,发挥声学超材料在声学聚焦技术中的优势,使用 COMSOL Multiphysics® 进行了水下聚焦超声技术研究,得到了较好的实验效果。这些研究对推动我国的声学透镜技术研究有较大的帮助,对基于 COMSOL 的有限元分析声学透镜技术有较大的借鉴。

Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy: Insight from Simulations with COMSOL Multiphysics® Software

Song-Yuan Ding [1], Jun Yi [1], En-Ming You [1], Zhong-Qun Tian [1],
[1] State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Xiamen University, Xiamen, China

Surface-enhanced Raman spectroscopy (SERS) has been developed as a versatile tool for trace-molecule detection and biomolecular analysis by coupled gold or silver nanostructures in the past two decades. However, SERS suffers from a long-term limitation of application for surface analysis of general materials. That is because the SERS hotspots in inter-particle nanogap generated from coupled ...

Dynamic Observation of Magnetic Particles in Continuous Flow Devices by Tunneling Magnetoresistance Sensors

A. Weddemann[1], A. Auge[1], F. Wittbracht[1], C. Albon[1], and A. Hütten[1]

[1]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

Dynamic measurement of magnetic particles in continuous flow devices is made very difficult by the limitations imposed by the sensors themselves. Thus, certain sensor layouts are restricted to either number sensitive or spatial resolutive measurements of magnetic particles. We investigate different new strategies to increase the detection threshold and introduce designs accomplishing both: ...

Particle Flow Control by Magnetically Induced Dynamics of Particle Interactions

F. Wittbracht[1], A. Weddemann[1], A. Auge[1], and A. Hütten[1]

[1]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

In this work, we show that dipolar magnetic coupling can be used to control the particle flow through microfluidic structures without changing the state of motion of the carrier liquid. Also no external magnetic gradient fields are employed; the total external magnetic force applied is therefore zero. The theoretical idea will be tested experimentally. Here, additional effects originating from ...

Dynamic Study of Field and Current Distribution in Multifilamentary YBCO Thin Films

F. Grilli[1], A. Lucarelli[2], G. Lüpke[2], T. Haugan[3], and P. Barnes[3]

[1]Ecole Polytechnique de Montréal, Montréal, QC, Canada
[2]College of William and Mary, Williamsburg, VA, USA
[3]Air Force Research Laboratory

We have developed a model for computing current and field distributions in multifilamentary superconducting thin films subjected to the simultaneous effects of transport ac current and applied dc field perpendicular to the sample. The model is implemented in COMSOL’s PDE module (general form) and solves Maxwell equations using a highly non-linear resistivity to describe the superconductor ...

Investigation of Natural Convective Air Flow Field through Comb Channels

R. Umhack, M. Rainer, M. Tamerle, and G. Hillmer
Process-, Environmental- and Bio- technology, MCI - University of Applied Sciences, Innsbruck, Austria

A new type of radiator with a package of combs, to gain a larger area for heat exchange, instead of trapezoidal convector plates, is investigated. The main aim is to find the optimal comb diameter. To solve this problem, CFD (computational fluid dynamics) with COMSOL Multiphysics is used. A chart showing radiator power was produced, which includes radiator power for different temperatures and ...

FEM Analysis of Contaminant Transport in a Loamy Desert Soil

B. Agasanapura, C. Nesbitt, and M. Misra
Chemical and Metallurgical Engineering, University of Nevada, Reno, Nevada, USA

In the present work, transport and adsorption of contaminants (lead, cesium) on loamy desert soil was modeled using the Finite Element Method (FEM). The Advective dispersion reaction mechanism was employed to describe the contaminant transport in soil medium. A partial differential equation (PDE) obtained from unsteady mass balance was developed using convective diffusion, solute adsorption, and ...

Localization of Chemical Sources Using Stochastic Differential Equations in Realistic Environments

A. Mohammed, and A. Jeremic
McMaster University, Hamilton, L8S4K1, Canada

Signal processing algorithms for chemical sensing/monitoring have been subject of considerable research interest in the recent years mainly due to their diverse applicability. When the concentration of chemical agent is small, the dispersion of particles is governed by stochastic differential equations describing more complex motion mechanisms such as Brownian motion. In this paper we propose ...

Parallel Performance Studies for COMSOL Multiphysics Using Scripting and Batch Processing

N. Petra[1], and M.K. Gobbert[1]

[1]Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, Maryland, USA

The graphical user interface (GUI) of COMSOL Multiphysics offers an effective environment to get started solving problems. For reproducibility of the results, it is often desirable to explore the script-based modeling capabilities of COMSOL with MATLAB. There are also potential benefits of running COMSOL in parallel, specifically by running several computational threads in shared-memory ...

FEA Simulation of Passive Ferrofluid Cooling Systems

Z. Fang[1,2], R. O'Handley[2], Y. Liu[2], and M. Yang[2,3]
[1]Pennsylvania State University, University Park, PA, USA
[2]Ferro Solutions Inc., Woburn, MA, USA
[3]Massachusetts Institute of Technology, Cambridge, MA, USA

Here we investigate a promising passive cooling method through making advantage of the unique properties of ferrofluid. When a magnetic dipole or a permanent magnet is put at the hot side of a system, it will attract the cold ferrofluid to the hot place and displace the hot ferrofluid since cold ferrofluid below Tc has much stronger magnetization than that of hot ferrofluid above Tc. Then the ...