Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

A Phase Field Approach to Model Laser Power Control in Spot Laser Welding

C. Touvrey[1], V. Bruyere[2], P. Namy[2]
[1]CEA DAM, Valduc, France
[2]SIMTEC, Grenoble, France

Spot laser welding is largely used in industrial manufacturing, especially in the case of small penetration depth. Unfortunately, welded joins are often polluted by porosities. The formation of porosities depends on complex thermo-hydraulic phenomena. During the interaction, a deep and narrow cavity - called the keyhole - is formed. At the end of the interaction, surface tension forces ...

COMSOL Multiphysics® Based Identification of Thermal Properties of Mesoporous Silicon by Pulsed Photothermal Method

N. Semmar[1], I. El Abdouni[1], A. Melhem[1]
[1]GREMI-UMR7344, CNRS/University of Orléans, Orléans, France

The silicon is mainly known under its single-crystal shape and polycrystalline. Since a few decades, a new type of morphology is developed: the porous silicon (p-Si). Meso-porous silicon (Mp-Si) is one of promising materials for future microelectronic chips multi-functionalization systems, and for micro-sensing devices. For thermal properties investigation many experimental systems were ...

Thermal Field in a NMR Cryostat

A. D'Orazio[1], C. Agostini[1], S. Fiacco[1]
[1]Dipartimento di Ingegneria Astronautica, Elettrica ed Energetica - Sapienza University of Rome, Rome, Italy

Fundamental component of the NMR tomograph is the magnet. By using the property of superconductivity it is possible to achieve an induction field extremely homogeneous, stable and high. To maintain the material below the superconducting critical temperature (7.2K), the coils are immersed in liquid helium at 4K, within a cryostat. In this paper, we present the preliminary results related to the ...

Transient Simulation of the Electrolyte Flow in a Closed Device for Precise Electrochemical Machining

M. Hackert-Oschätzchen[1], M. Penzel[1], M. Kowalick[1], G. Meichsner[2], A. Schubert[1,2]
[1]Professorship Micromanufacturing Technology, Technische Universität Chemnitz, Chemnitz, Germany
[2]Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

Precise electrochemical machining (PEM) is an innovative machining technology which results from further development of the electrochemical sinking. PEM works with pulsed low frequency direct current and oscillation of the tool electrode. As part of the project ‘Electrochemical machining of internal precision and micro-geometries with high aspect ratios by process-state-dependent electrolyte ...

Modeling of Wettability Alteration during Spontaneous Imbibition of Mutually Soluble Solvents in Mixed Wet Fractured Reservoirs

M. Chahardowli[1], H. Bruining[1]
[1]Delft University of Technology, Delft, The Netherlands

Mutually-soluble solvents can enhance oil recovery both in completely and partially water wet fractured reservoirs. When a strongly or partially water-wet matrix is surrounded by an immiscible wetting phase in the fracture, spontaneous imbibition is the most important production mechanism. Initially, the solvent moves with the imbibing brine into the core. However, upon contact with oil, as the ...

On the Influence of Cancellous Bone Structure upon the Electric Field Distribution of Electrostimulative Implants

U. Zimmermann[1], R.Bader[2], U. van Rienen[1]
[1]Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
[2]Department of Orthopaedics, University Medicine Rostock, Rostock, Germany

Since the 1980s, the accelerating effect of electromagnetic fields on bone regeneration is used to treat complicated fractures and bone diseases. At the University of Rostock, an electrostimulative hip revision system is developed, basing on the method of Kraus-Lechner. This method requires an electric fields between 5 and 70 V/m. The bone used for the simulations consisted of two homogenous ...

Prediction of Air Permeability Using a Finite Element Method

A. Pezzin[1], A. Ferri[1]
[1]Politecnico di Torino, Torino, Italy

Air permeability is one of the most important parameters in the study of thermo-physiological comfort of fabrics. The main goal of this work is to develop a virtual process that allows the prediction of air permeability of any fabric without realizing a sample. The Free and Porous Media Flow physics interface was used in COMSOL Multiphysics® software; this allows to use Navier-Stokes equation ...

Modelling of the Dynamical Fluorescent Micro-Thermal Imaging Experiment on the Heat Diffusion in the La5Ca9Cu24O41 Spin Ladder Compound

E. Khadikova[1], F. de Haan[1], P. H. M. van Loosdrecht[2]
[1]Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
[2]Department of Physics, University of Cologne, Köln, Germany

The dynamical fluorescent micro-thermal imaging (FMI) experiment has been used to investigate the phonon-magnon interaction in the 1D Heisenberg antiferromagnet La5Ca9Cu24O41. This material shows highly anisotropic heat conductivity due to the efficient magnetic heat transport along the spin ladders in the compound carried by magnetic excitations (magnons). To extract information on the ...

Thermo-fluid Dynamics Modelling of Hydrogen Absorption and Desorption in a LaNi4.8Al0.2 Hydride Bed

D. Baldissin[1] and D. Lombardo[1]
[1]Compumat S.r.l., Torino, Italy

A two-dimensional mathematical model for the absorption and desorption of H2 in LaNi4.8Al0.2 was developed and experimentally validated. The model is composed of an energy balance, a mass balance and a momentum balance. These differential equations are numerically solved by means of the finite element method using the software COMSOL Multiphysics®. From a comparison between theoretical ...

Microwave Coagulation Therapy Using Microwave Antenna

M. Surita[1], M. Patel[2], and S. Marwaha[1]
[1] Department of Electrical & Instrumentation Engineering, SLIET , Longowal (Deemed University), Punjab
[2] ABES Engineering College, Department of Electronics and Communication Engineering, Ghaziabad

The purpose of this paper is to illustrate the microwave coagulation therapy (MCT) that can be used mainly for the treatment of hepatocellular carcinoma. In this treatment invasive technique are used in which thin microwave coaxial antenna is inserted into the tumor and the microwave energy heats up the tumor to produce the coagulated region including the cancer cells. We have to heat the cancer ...

Quick Search

2741 - 2750 of 3644 First | < Previous | Next > | Last