Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Quasi-static Analysis on the Effect of Metal Penetrating Depth into the Substrate in Microstriplines

S. Musa, and M. Sadiku
Prairie View A&M University Networking Academy (PVNA), Prairie View, TX, USA

The effect of metallization thickness on planar transmission lines plays an essential role in microwave integrated circuits and thin film technology, especially in the propagation characterization and the electric field distribution in the structures. The objective of this paper is to consider the planar transmission lines with finite thickness not penetrating and penetrating into isotropic ...

A Multiphysics Approach to Fundamental Conjugate Drying by Forced Convection

M. de Bonis, and G. Ruocco
DITEC, Universitµa degli studi della Basilicata, Campus Macchia Romana, Potenza, Italy

Heat and mass transfer involved in drying is studied by using COMSOL 3.4. The effect of air temperature on the performance of the drying process applied to fresh food slices is scrutinized. COMSOL’s flexible formulation is exploited by using special drying kinetics for the substrate, and by including a treatment of the dependence of the properties upon the residual moisture content. The model ...

Design of Passive Micromixers using the COMSOL Multiphysics software package

M. Itomlenskis, P. Fodor, and M. Kaufman

Physics Department, Cleveland State University, Cleveland, OH, USA

Relief patterning of the surface of microchannels has been actively pursued as a method of promoting mixing in systems with a low Reynold’s number (<<100). In this work, we explore, by using the COMSOL Multiphysics package and its Chemical Engineering Module, the possibility of enhancing the mixing quality of two fluids in a microchannel with a non-periodic fractal pattern of ridges ...

Numerical Simulation of Granular Solids’ Rheology: Comparison with Experimental Results

A. Zugliano[1], R. Artoni[2], A. Santomaso[2], A. Primavera[1], M. Pavlicevic[1]
[1]Danieli & C. Officine Meccaniche, Italy
[2]DIPIC - Universita di Padova, Italy

A simulation of the behavior of bulk solids continuously flowing through a silo with internal flow feeders has been performed by means of a dissipative hydrodynamic model. The results obtained by these calculations and those found experimentally agree, not only with regard to the velocity profiles, but also relative to the pressure on the silo walls. The dissipative hydrodynamic model represents ...

Sound Attenuation by Hearing Aid Earmold Tubing

M. Herring Jensen
Widex A/S, Vaerloese, Denmark

In this study we model the sound attenuation properties of a hearing aid earmold tube. The model includes thermoviscous acoustic effects and it couples structural vibrations to the external acoustic field. Moreover, the finite element domain is coupled at two boundaries with an electroacoustic model of a hearing aid and an acoustic 2-cc coupler.

Designing the Actuator for the Next-Generation Astronomical Deformable Mirrors: a Multidisciplinary and Multiphysics Approach

C. Del Vecchio[1], R. Biasi[2] , D. Gallieni[3], and A. Riccardi[1]

[1]INAF-OAA, Fierenze, Italy
[2]Microgate Srl, Bolzano, Italy
[3]ADS International Srl, Valmadrera, Italy

The actuation system of the deformable mirror is one of the crucial components of an Adaptive Optics unit. One possible implementation comprehends a linear force motor and a capacitive sensor providing the feedback measure signal. Choosing a magnetic circuit that makes optimum use of the magnetic force delivered by a current and properly arranging the electrostatic geometry allows to obtain very ...

Design and Optimization of an All Optically Driven Phase Correction MEMS Deformable Mirror Device using Finite Element Analysis

V. Mathur[1], K. Anglin[1], V.S. Prasher[1], K. Termkoa[1], S.R. Vangala[1], X. Qian[1], J. Sherwood[1], W.D. Goodhue[1], B. Haji-Saeed[2], and J. Khoury[2]

[1]Photonics Center, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
[2]Air Force Research Laboratory/Sensors Directorate, Hanscom Air Force Base, Massachusetts, USA

Optically addressable MEMS mirrors are required for future high density adaptive optics array systems. We have demonstrated a novel technique of achieving this by actuating low stress Silicon Nitride micro mirrors via cascaded wafer bonded Gallium Arsenide photo detectors on Gallium Phosphide. In the work reported here, we discuss the key design parameters of the device, and present the finite ...

The Fabrication of a New Actuator Based on the Flexoelectric Effect

S. Baskaran[1], S. Thiruvannamalai[1], N. Ramachandran[1], F.M. Sebastian[1], and J.Y. Fu[1]
[1]State University of New York at Buffalo, Buffalo, New York, USA

This paper presents a novel methodology towards the design, analysis, and the fabrication process involved in developing a cost effective method to create a piezoelectric actuator by means of the flexoelectric effect. The basic physical equations of the flexoelectric effect and the qualitative analysis of the flexoelectric actuator are done using COMSOL Multiphysics. This effect is used to align ...

Reliability Testing for the Next Generation of Microelectronic Devices

J. Plawsky, W. Gill, M. Riley, J. Borja, and B. Williams
Rensselaer Polytechnic Institute, Troy, NY, USA

Understanding and predicting the reliability of new generations of high and low-k dielectrics is increasingly important for gate oxides and interlayer dielectrics as both films have become thinner and scaling of device operating voltages has not kept pace with the decrease in the size of the dielectrics. We have developed a series of COMSOL-based mass transfer-based models that have proven to ...

Physical and FEM Simulation of Microprobe Insertion into Brain Tissue

A. Eed Olamat, U. Hofmann, B. Pohl, and N. Nkemasong
University of Lübeck, Institute for Signal Processing, Lübeck, Germany

In order to investigate the implantation of microprobes into brain tissue, we developed a finite-element and a physical model to replace real biological tissue for mechanical testing. Penetrating forces of a tungsten indenter into a layered structure was investigated with different indentation speeds. Numerical and physical model are in good correspondence to each other and reproduce measured ...