Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Optimization of Drying Step to Obtain Large, Transparent Magnesium-Aluminate Spinel Ceramics

J. Petit [1], L. Lallemant [1],
[1] ONERA, Chatillon, France

To obtain large transparent ceramic samples, we optimized the drying step process using COMSOL Multiphysics®. Indeed, green body's drying in a climate chamber is the critical step when large size and complex shape samples are needed. Then we obtained 75 mm diameter and 10 mm thickness highly transparent spinel ceramics.

Transient CFD Investigation of a Photocatalytic Multi-tube Reactor

S. Denys [1], J. van Walsem [1], J. Roegiers [1], S. Lenaerts [1],
[1] University of Antwerp, Antwerp, Belgium

As in industrial countries, people spend most of their time indoors and the stringent heat-insulation measures in combination with deficient ventilation have a negative impact on indoor air quality, one approach for abating indoor air pollution is the integration or retrofitting of a photocatalytic oxidation or PCO reactor into continuous flow. PCO technology is very cost-effective, efficient ...

Development of a Single Cell Trapping Microfluidic Device

L. Weng [1], F. Ellett [1], J. F. Edd [1], M. Toner [1,2],
[1] Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
[2] Shriners Hospital for Children, Boston, MA, USA

Array-based technologies are important for many applications in drug discovery, microbiology and cell biology. A large-scale array of single cells allows high-throughput monitoring of behaviors of individual cells in parallel, avoiding the lack of cell specificity inherent to bulk measurement methods. Here, we designed a passive-pumping microfluidic device for trapping cells in an array and used ...

Interactive Design of an Electrostatic Headphone Speaker Using COMSOL Server™

B. A. Marmo [1], M. P. Snaith [1],
[1] Xi Engineering Consultants, Edinburgh, United Kingdom

An electrostatic headphone includes many interrelated design elements that affect the frequency response of the headphone and the users listening experience. Xi Engineering Consultants (XI) partnered with Warwick Audio Technologies (WAT) to investigate the complex behavior of one-side electrostatic speakers. Xi developed a GUI that helped WAT engineers optimize their speaker using virtual tools ...

Optimizing the Fluorescence of Diamond Color Centers Encapsulated into Core-Shell Nano-Resonators

M. Csete [1], L. Z. Szabó [1], A. Szenes [1], B. Bánhelyi [2], T. Csendes [2], G. Szabó [1]
[1] Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
[2] Institute of Informatics, University of Szeged, Szeged, Hungary

INTRODUCTION Enhancement of a single-photon emission is a great demand in recent science and applications, including development novel class of light sources, encoded information transfer and biological imaging [1, 2, 3]. Fluorescence can be improved through excitation and emission enhancement. Improvement of these two processes can be realized by using the near-field enhancement accompanying ...

Modeling of Nonuniform Magnetisation of a Ferrite Loaded Waveguide

H. V. Dixit [1], A. R. Jadhav [2], Y. M. Jain [3], A. N. Cheeran [1], V. Gupta [2], P. K. Sharma [3],
[1] Veermata Jijabai Technological Institute, Mumbai, Maharashtra, India
[2] Vidyavardhini's College of Engineering and Technology, Vasai, Maharashtra, India
[3] Institute for Plasma Research, Gandhinagar, Gujarat, India

The modelling of a ferrite material is conventionally carried out using the Polder permeability tensor which assumes that the ferrite is saturated by a uniform magnetic field. This assumption is often inaccurate due to the constraints imposed by boundary conditions which renders the magnetic field non-uniform. This work proposes to overcome this by determining the magnetic field through a ...

CFD Simulation of Coolant Flow of 2nd Generation HFIR Irradiation Target Holder

J. D'Arrigo [1], A. Elzawawy [1], S. Rabbani [1], J. D. Freels [2]
[1] Vaughn College of Aeronautics and Technology, New York, NY, USA
[2] Oak Ridge National Laboratory, Oak Ridge, TN, USA

A 2nd-generation irradiation target holder is being developed at the High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory (ORNL). This 2nd-generation holder design is focused on improving the loading and unloading of the targets by the HFIR operators since a large number of targets are anticipated to be irradiated in the future. Part of the safety analysis required is to ensure ...

Numerical Simulation and Thermal Analysis of Tumor in the Human Body

S. Hossain [1], F. A. Mohammadi [1]
[1] Department of Electrical and Computer Engineering, Ryerson University, Toronto, ON, Canada

INTRODUCTION: Abnormalities in local body surface temperature have been recognized as a sign of disease for centuries, much before humans knew about the cause of ailments or of pain [1]. The idea of this work is to use numerical simulation tools to predict the location, size and metabolism of tumor embedded in any outer body organ of human. Idealized thermal data of an organ, modeled either as a ...

Liquid Crystal Based Terahertz Metamaterial Absorbers

Wang Lei [1],
[1] Nanjing University of Posts and Telecommunications, Nanjing, China

Metamaterial-based absorbers play a significant role in applications ranging from energy harvesting and thermal emitters to sensors and imaging devices. The middle dielectric layer of conventional metamaterial absorbers has always been solid. Researchers could not detect the near field distribution in this layer or utilize it effectively. Here, we use anisotropic liquid crystal as the dielectric ...

Modeling Directional Two Arm Archimedes Spiral Coils in the RF Electromagnet Range

A. Kalinowski, and J. Maguire
Naval Undersea Warfare Center/Div. Npt. , Newport, RI, USA

The paper addresses a class of problems for modeling and consequently simulating the electromagnetic field radiation pattern from a two arm Archimedes spiral coil. The performance of particular interest is knowledge of the radiated magnetic field H and electric field E in the neighborhood of the coil. The results in this paper illustrate how COMSOL is used to solve for the radiated ...