See How Multiphysics Simulation Is Used in Research and Development


Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection

COMSOL Multiphysics Models for Teaching Chemical Engineering Fundamentals: Absorption Column Models and Illustration of the Two-Film Theory of Mass Transfer

W. Clark
Chemical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, USA

COMSOL® models have been developed for teaching gas absorption fundamentals. Model results are compared to environmentally significant experimental results for removing CO2 and SO2 from air using water as solvent. For concentrated gas mixtures, the models are shown to be equivalent ... Read More

Modeling of a Dielectric Barrier Discharge Lamp for UV Production

S. Bhosle, R. Diez, H. Piquet, D. Le Thanh, B. Rahmani, D. Buso
Université de Toulouse, Toulouse, France

Excilamps are artificial Ultraviolet sources based on the emission of excimers or exciplexes. The latter are excited states of weakly bound rare gas or halide/rare gas atoms which emit a photon in the UV region when they dissociate. Dielectric Barrier Discharge (DBD) excilamps are ... Read More

Validation of the Acoustic Finite Element Model of a Very Light Jet Cavity Mock-up

F. Teuma Tsafack, K. Kochan, T. Kletschkowski, and D. Sachau
Helmut Schmidt University/ University of the Federal Armed Forces Hamburg, Germany

This paper presents an important step in developing a combined active noise- and audio system for a light jet. To prepare its installation both a wooden mock-up and a finite element model of the investigated cavity were created. Sensitivity analysis and key parameters selection were ... Read More

COMSOL in a New Tensorial Formulation of Non-Isothermal Poroelasticity

A. Mario-Cesar Suarez[1], and V. Fernando Samaniego[2]

[1]Faculty of Sciences, Michoacan University, Morelia, Mich., Mexico
[2]Faculty of Engineering, National University of Mexico, Mexico City, Mexico

The presence of a moving fluid in a porous rock modifies its mechanical response. Poroelasticity explains how the fluid inside the pores bears a portion of the total load supported by the rock. The remaining part of the load is supported by the elastic skeleton, which contains a laminar ... Read More

Using COMSOL for the Transport Modelling of Some Special Cases in a Bentonite Buffer in a Final Repository for Spent Nuclear Fuel

M. Olin[1], V-M. Pulkkanen[1], A. Seppälä[1], T. Saario[1], A. Itälä[1], M. Tanhua-Tyrkkö[1], and M. Liukkonen[1]

[1]VTT, Technical Research Centre of Finland, Espoo, Finland

The bentonite barrier is an essential part of a safe spent fuel repository in granitic bedrock. In this work COMSOL Multiphysics® is used in modelling the Thermal (T), Hydrological (H), Mechanical (M) and Chemical (C) phenomena and processes taking place in a bentonite buffer. Special ... Read More

Non-Equilibrium Quantum Well Populations and Optical Characteristics of III-Nitride Lasers and Light-Emitting Diodes

M. Kisin, and H. El-Ghoroury
Ostendo Technologies, Inc.
Carlsbad, CA

COMSOL-based Ostendo’s Optoelectronic Device Modeling Software (ODMS) has been updated to include effects of non-equilibrium QW populations in semiconductor light-emitting and laser diodes. III-nitride light emitters with different levels of polarity have been compared as an ... Read More

Patch Antenna Model for Unmanned Aerial Vehicle

T. Eppes, I. Milanovic, and S. Thiruvengadam
University of Hartford
West Hartford, CT

Patch antennas are widely used in communications links with unmanned aerial vehicles. Their hemispherical send and receive patterns enable the systems to maintain radio frequency contact over a wide range of vehicular attitudes. A microstrip-fed design offers other attractive features ... Read More

Modeling of Articular Cartilage Growth Using COMSOL

K. Manda, and A. Eriksson
KTH Mechanics
Royal Institute of Technology
100 44 Stockholm, Sweden

Articular cartilage is an avascular connective soft tissue in the diarthrodial joints and functions in a highly demanding mechanical environment. The degeneration or wear of the cartilage is a huge problem that effects millions of people every year. The long term objective of the ... Read More

COMSOL Simulations for Steady State Thermal Hydraulics Analyses of ORNL’s High Flux Isotope Reactor

P.K. Jain[1], V.B. Khane[2], J.D. Freels[1]
[1]Oak Ridge National Laboratory, Oak Ridge, TN, USA
[2]Missouri University of Science and Technology, Rolla, MO, USA

Simulation models for steady state thermal hydraulics analyses of ORNL’s HFIR have been developed using COMSOL. A single fuel plate and coolant channel of each type of HFIR fuel element was modeled in three dimensions. The standard k-? turbulence model was used in simulating turbulent ... Read More

Deposition of Submicron Charged Spherical Particles in the Trachea of the Human Airways

H.O. Åkerstedt[1]
[1]Luleå University of Technology, Luleå, Sweden

This paper presents a numerical study of the deposition of submicron charged spherical particles caused by convection, Brownian and turbulent diffusion in a pipe with a smooth wall and with a cartilaginous ring wall structure (see figure). The model is supposed to describe deposition of ... Read More