Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling an Enzyme Based Electrochemical Blood Glucose Sensor with COMSOL Multiphysics

S. Mackintosh[1], J. Rodgers[1], S.P. Blythe[1]
[1]Lifescan Scotland, Inverness, Scotland

This paper describes the modeling of a blood glucose sensor using COMSOL Multiphysics. Chemical species interaction and diffusion, coupled with electrochemical oxidation of multiple blood species produced a powerful working model used in developing and refining a range of blood glucose sensors for the commercial market.

Complex K-Bands Calculation for Plasmonic Crystal Slabs by Means of Weak Formulation of Helmholtz's Eigenvalue Equation

G. Parisi[1], P. Zilio[1], F. Romanato[1]
[1]University of Padova, Padova, Italy

We present a Finite Element Method (FEM) to calculate the complex valued k(?) dispersion curves of a photonic crystal slab in presence of both dispersive and lossy materials. In particular the method can be exploited to study plasmonic crystal slabs. We adopt Perfectly Matched Layers (PMLs) in order to truncate the open boundaries of the model, including their related anisotropic permittivity ...

Calculations of the FMR Spectrum in 1D Magnonic Crystals

M. Mruczkiewicz[1], M. Krawczyk[1], V.K. Sakharov[2], Yu. V. Khivintsev[2], Yu. A. Filimonov[2], S. A. Nikitov[3]
[1]Nanomaterials Physics Division, Faculty of Physics, Adam Mickiewicz University, Pozna?, Poland
[2]Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences (Saratov Branch), Saratov, Russia; Laboratory “Metamaterials”, Chernyshevsky Saratov State University, Saratov, Russia
[3]Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia; Laboratory “Metamaterials”, Chernyshevsky Saratov State University, Saratov, Russia

FMR spectra of the periodic microstructures (one-dimensional magnonic crystals, 1D MCs) were obtained using COMSOL with use partial differential equation interface. Results of these calculations were successfully compared with an experimental data for Damon-Eshbach (DE) and Backward-Volume (BV) geometries. The presented tool allows to analyze periodic structures with various geometries and ...

Transient RF Heating of a Conductive Implant: Coupled Electromagnetic/Thermal Simulation and Experimental Validation

A. Leewood[1], D. Gross[1], J. Crompton[2], S. Yushanov[2], O. Simonetti[3], Y. Ding[3]
[1] MED Institute Inc., West Lafayette, IN, USA
[2] AltaSim Technologies, Columbus, OH, USA
[3] Ohio State University, Columbus, OH, USA

The purpose of this work was to establish a reliable radio frequency (RF) heating simulation which directly provides transient temperatures for medical devices with high geometric fidelity. These temporal results of localized temperatures can be used to determine conditions for safety of medical devices in the magnetic resonance (MR) environment. Information from this work will directly benefit ...

Elastoplastic Deformation in a Wedge-Shaped Plate Caused by a Subducting Seamount

M. Ding[1], J. Lin[2]
[1]MIT/WHOI Joint Program in Oceanography, Cambridge, MA, USA
[2]Woods Hole Oceanographic Institution, Woods Hole, MA, USA

We used COMSOL Multiphysics 4.3 to simulate the 2D elastoplastic deformation and plastic strain in a wedge-shaped plate above a subducting interface. The modeling results reveal that a pair of conjugate normal faults would first appear in the thinner part of the plate. Subsequently, a second pair of conjugate thrust faults would form in the thicker part of the plate. The duration of the seamount ...

3-Dimensional Blood Cooling Model inside a Carotid Bifurcation

R. Sikorski[1], T. Merrill[1]
[1]Rowan University, Glassboro, NJ, USA

Stroke is caused by an interruption of brain blood supply and is one of the leading causes of death and disability. A mild reduction of 2-5°C in tissue temperature through hypothermia has shown reduced tissue infarct size, increased tissue recovery, and positive neurological effects. This paper seeks to predict the outlet blood temperature in the common carotid bifurcation branches. In our ...

Nondestructive Testing of Composites Using Model Based Design

E. Nesvijski[1]

There is a practical interest among composite materials manufacturers to high-speed accurate non-destructive evaluation (NDE) technology for voids inspection when these voids are natural components of such complex structures like resin insulated layer of double-sided copper-clad laminates. Model based design (MBD) of NDE system is one of principal solutions for voids inspection in such ...

Singlet Oxygen Modeling of BPD Mediated-PDT Using COMSOL

T.C. Zhu[1], B. Liu[1], X. Liang[1]
[1]University of Pennsylvania, Philadelphia, PA, USA

Singlet oxygen (1O2) is the major cytotoxic agent during photodynamic therapy (PDT). A previously developed model that incorporates the diffusion equation for the light transport in tissue and the macroscopic kinetic equations for the generation of the singlet oxygen, can be used to numerically calculate the distance-dependent reacted 1O2 using finite-element method (FEM). The formula of reacted ...

Numerical Simulation of Flow Electrolysers: Effect of Various Geometric Parameters

P. Shukla[1], K. K. Singh[1], P. K. Gupta [1], S. K. Ghosh[1]
[1]Bhabha Atomic Research Centre, Trombay, Mumbai, India

Flow electrolysers find several applications in industry. They are used for production of metals and synthesis of chemicals, gases. Cleaning and preservation of old artifacts, electrolytic refining of metals, electrolytic winning of metals, alkaline water electrolysis, anodization, electrometallurgy, electroplating, electrolytic etching of metal surfaces are other industrial applications of flow ...

Multiphysics Modeling and Simulation of MEMS based Variometer for Detecting the Vertical Speed of Aircraft in Avionics Applications

K. Umapathi[1], K. Sukirtha[2], C. Sujitha[2], K. A. Noushad[2], Venkateswaran[1], R. Poornima[1], R. Yogeswari[1]
[1]United Institute of Technology, Coimbatore, Tamil Nadu, India
[2]Sri Krishna College of Engineering and Technology, Coimbatore, Tamil Nadu, India

The objective of this work is to develop a MEMS based Variometer to measure the vertical speed and to sense the instantaneous rate of climb or descent in Aircrafts to meet the miniaturization requirements in avionics industry. The design consists of dielectric material in between two micro electrodes. The micro diaphragm is placed on one of the electrode. As the aircraft changes altitude, the ...

2681 - 2690 of 3390 First | < Previous | Next > | Last