Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

A Finite Element Analysis on the Modeling of Heat Release Rate, as Assessed by a Cone Calorimeter, of Char Forming Polycarbonate

D. Statler[1], and R. Gupta[2]
[1]Mid-Atlantic Technology, Research and Innovation Center, South Charleston, WV, USA
[2]Department of Chemical Engineering, West Virginia University, Morgantown, WV, USA

During the pyrolysis and combustion of polymers, heat is released and is typically measured with a cone calorimeter to better assess the polymer’s flammability. Modeling heat release rate, as assessed by cone calorimetry, has not been extensively studied for char-forming polymers, such as, polycarbonate. Here we determine the heat release rate with the help of a one-dimensional transient finite ...

Analyzing a Malfunctioning Clarifier with COMSOL’s Mixture Model

A. de Niet, A. van Nieuwenhuijzen, and A. Geilvoet
Witteveen+Bos, Deventer, The Netherlands

Clarifiers are used to separate sludge and water in waste water treatment plants. In this paper we analyze a malfunctioning clarifier using the mixture model. We are able to receive model results that are reasonably close to measurements from the real clarifier. With the model we can explain the bad separation of water and sludge in the clarifier. Engineers have proposed several actions in order ...

Simulation of Current Collector Corrosion Effects on the Efficiency of Molten Carbonate Fuel Cells

I. Sgura[1], F. Zarcone[2], and B. Bozzini[2]
[1]Dipartimento di Matematica, Università del Salento, Lecce, Italy
[2]Brindisi Fuel Cell Durability Laboratory, Facoltà di Ingegneria Industriale, Università del Salento, Brindisi, Italy

Corrosion and contact ohmic resistance of the stainless steel current collectors in molten carbonates is one of the greatest obstacles to widespread application of molten carbonate fuel cells (MCFC). We simulate the variation of material parameters values, accounting for the impact of corrosion of the metallic current collectors on the performance of the porous cathode. Furthermore, we couple a ...

Mixing Layer Analysis in Variable Density Turbulent Flow

A.E. Alshayji[1]
[1]Department of Mechanical Engineering, College of Engineering and Petroleum, Kuwait University, Safat, Kuwait

In this study, numerical simulations of mixing in turbulent flow, subject to a change in density, are performed. Attention is focused on the binary mixing between two streams of fluid in which a variable density step are formed due to a difference in the temperature. This binary mixing problem performed by assuming low Mach number flow. The results demonstrate the variable density effects and ...

Design of High Performance Condenser Microphone Using Porous Silicon

S. Suganthi[1], M. Anandraj[2], and L. Sujatha[1]
[1]Department of Electronics & Communication Engineering, Rajalakshmi Engineering College, Chennai, India
[2]Department of Physics, Rajalakshmi Engineering College, Chennai, India

Porous Silicon (PS) can easily be formed by electrochemical etching of silicon in HF based electrolytes at room temperature. Since, PS is compatible with silicon IC technology; it finds lot of applications in the fabrication of MEMS devices. In the current study, we discuss the design of a condenser microphone using a Silicon/ Porous Silicon composite membrane as a movable plate. The performance ...

Dynamic Simulation Of Particle Self-Assembly Applied To Microarray Technology

V. Di Virgilio, A. Coll, S. Bermejo, and L. Castañer
Universitat Politecnica de Catalunya, Barcelona, Spain

In this work we want to explore some techniques, microfluidic and electrospray-ionization based, suitable for dynamic microarrays\' fabrication. The fabrication techniques are based on manipulation and self-assembly of selective coated micro and nanobeads. The simulation will include electro-osmotic flow, species transport, and electrostatics.

A Methodology For The Simulation Of MEMS Spiral Inductances Used As Magnetic Sensors

S. Druart, D. Flandre, and L.A. Francis
Université catholique de Louvain - ICTEAM, Louvain-la-Neuve, Belgium

In this paper, a methodology to simulate the electric behavior of spiral inductances is presented and discussed. All the methodology is built with the COMSOL software used with the Matlab scripting interface and then allows performing fully parameterized simulations. The program architecture is explained and is used to simulate two applications. The first calculates the voltage induced by an ...

From customer requirement to product requirement with COMSOL

A.B. Nilsson
BD Medical - Medical Surgical Systems, Helsingborg, Sweden

Anders B Nilsson graduated M. Sc. in engineering physics from Lund University in Sweden. He has been working in the R&D department at BD Medical as principal engineer and project leader since 2005. He uses COMSOL for a wide range of functions, such as early concept development and qualification of products.

Investigation Of Bone Marrow Stem Cells In The Bone Marrow Niche In An In Vitro System

P. Lezuo, M. Stoddart, and M. Alini
AO Research Institute, Davos, Grison, Switzerland

We aim to develop an in vitro culture system to mimic the human bone marrow stem cell niche in an artificial perfusion bioreactor environment to culture human adult stem cells. State of the art human bone marrow stem cell research shows that even smallest changes in the physical, thermo dynamical or biochemical environment induce a differentiation of human bone marrow stem cells into other cell ...

Accurate Parameters Extraction of Multiconductor Transmission Lines in Multilayer Dielectric Media

S. Musa[1], M. Sadiku[1], and O. Momoh[2]
[1]Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, TX
[2]Indiana University-Purdue University

Development of very high speed integrated circuits is currently of great interest for today\'s technologies. This paper presents the quasi-TEM approach for the accurate parameters extraction of multiconductor transmission lines interconnect in single, two, and three-layered dielectric regions using the finite element method (FEM). We illustrate that FEM is accurate and effective for modeling ...

2681 - 2690 of 3394 First | < Previous | Next > | Last