Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Design of Novel Recirculation System for Slow Reacting Assays in Microfluidic Domain

N.N. Sharma, and A. Tekawade
Mechanical Engineering Group, Birla Institute of Technology & Science, Pilani, Rajasthan, India

A simple design for a microfluidic flow system for use in mixing or reacting assays with limited sample availability has been proposed and analyzed using COMSOL\'s multiphysics simulation package. The design is based on differential electroosmotic flow concept which has facilitated a number of interesting flow phenomena in micro-domains. For an average potential drop of about 86 kV/m in the ...

Control of Technological and Production Processes Modeled by COMSOL Multiphysics as Distributed Parameter Systems

G. Hulkó, C. Belavý, G. Takács, and P. Zajíček
Slovak Technical University in Bratislava, Bratislava, Slovakia

COMSOL Multiphysics is widely utilized in the modeling of dynamics of technological and manufacturing processes. At the same time the investigated technological and manufacturing processes are generally described by systems of partial differential equations as distributed parameter systems. This paper presents actual possibilities of control of systems modeled by COMSOL Multiphysics as ...

Dynamic Simulation Of Particle Self-Assembly Applied To Microarray Technology

V. Di Virgilio, A. Coll, S. Bermejo, and L. Castañer
Universitat Politecnica de Catalunya, Barcelona, Spain

In this work we want to explore some techniques, microfluidic and electrospray-ionization based, suitable for dynamic microarrays\' fabrication. The fabrication techniques are based on manipulation and self-assembly of selective coated micro and nanobeads. The simulation will include electro-osmotic flow, species transport, and electrostatics.

ComsolGrid – A Framework For Performing Large-Scale Parameter Studies Using COMSOL Multiphysics and Berkeley Open Infrastructure for Network Computing (BOINC)

C.B. Ries, and C. Schröder
University of Applied Sciences Bielefeld, Germany

BOINC (Berkeley Open Infrastructure for Network Computing) is an open-source framework for solving large-scale and complex computational problems by means of public resource computing (PRC). In contrast to massive parallel computing, PRC applications are distributed onto a large number of heterogeneous client computers connected by the Internet where each computer is assigned an individual task ...

Simulation of a Forming Process for Joining a Piezo Aluminium Module

M. Hackert, S.F. Jahn, and A. Schubert
Chemnitz University of Technology, Chair Micromanufacturing Technology, Germany

The fabrication of piezo aluminium composite modules for sensor and actor applications with mass production technologies is in the scope of the SFB/Transregio 39 PT-PIESA project funded by the (German Research Foundation). After forming of cavities with a width of 0.3 mm into aluminium sheets by micro impact extrusion and the insertion of 0.25 × 0.25 mm2 piezo rods, a joining of the rods into ...

Experimental and Numerical Fluid Flows Study on a X-Millichannel

C. Wolluschek[1], F. Etcheverry[2], M. Cachile[2], and J. Gomba[3]
[1]Mecánica de Fluidos e Ingeniería Térmica, Centro tecnológico Cemitec, Noáin, Navarra, Spain
[2]Grupo de Medios Porosos, Facultad de Ingeniería, UBA, Buenos Aires, Argentina
[3]Instituto de Física Arroyo Seco, UNCPBA, Tandil, Argentina.

In this work, a COMSOL model that predicts velocity and concentration fields inside an X-shaped millichannel (4 mm diameter) is developed. Water and a ink low concentration are injected simultaneously in the two inlets of the device. The mass transfer problem is solved by a Fickian model (solute concentration is low compared with the solvent). The parameters in this study are: initial inlet mass ...

Influence of pH and Carbonate Buffering on the Performance of a Lactate Microbial Fuel Cell

A.Torrents, N. Godino, F.J. del Campo, F.X. Muñoz, and J. Mas
Universitat Autònoma de Barcelona, Spain

Microbia Fuel Cells (MFC’s) are complex environments where electrochemical, physical and biological aspects must be considered together. In this work we present a 1D model partially describing a Shewanella oneidensis MFC that degrade sodium lactate [lactate -> Acetate + CO2 + 2H+ + 2e-]. The model, simulated using COMSOL, focuses on pH implications of the MFC operation. Release of protons ...

Investigation Of Bone Marrow Stem Cells In The Bone Marrow Niche In An In Vitro System

P. Lezuo, M. Stoddart, and M. Alini
AO Research Institute, Davos, Grison, Switzerland

We aim to develop an in vitro culture system to mimic the human bone marrow stem cell niche in an artificial perfusion bioreactor environment to culture human adult stem cells. State of the art human bone marrow stem cell research shows that even smallest changes in the physical, thermo dynamical or biochemical environment induce a differentiation of human bone marrow stem cells into other cell ...

COMSOL Assistance for the Modeling of Cellular Microsystems

J. Berthier
CEA-LETI-Minatec
Grenoble, France

The developments of microsystems for biotechnology have been fast in the last few years, and no sign of slowing down is observed. It has begun with lab-on-chip for genomics, especially for the recognition of DNA sequences, followed by protein reactors and immunoassays, and today the emphasis is on cellomics. Cell-chips are design to monitor the behavior of cells, individually or as a group, ...

3D FEM-analysis of a Micromachined Wind Sensor Based on a Self-heated Thermistor Array

A. Talic[1], S. Cerimovic[2], M. Mutapcic[2], R. Beigelbeck[1], and F. Keplinger[2]
[1]Institute for Integrated Sensor Systems, Austrian Academy of Sciences, Wiener Neustadt, Austria
[2]Institute of Sensor and Actuator Systems, Vienna University of Technology, Vienna, Austria

We present COMSOL-based analyses and design optimizations of a micromachined wind sensor. The sensor relies on eight germanium thermistors embedded in a thin silicon nitride membrane, where two orthogonally arranged ensembles, each consisting of four thermistors, are connected to form a double Wheatstone-bridge. In operation, each bridge is supplied by a constant current and the self-heating of ...

Quick Search

2681 - 2690 of 2856 First | < Previous | Next > | Last