Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling an electric cell actuator and loudspeaker using COMSOL Multiphysics

W. J. Wu
NTU Nano-Bio MEMS Group
National Taiwan University,
Taiwan

This presentation presented the following: * The building of an FEA model of an electric cell actuator using COMSOL Multiphysics * Validation of this model through the AVID and ESPI measurement systems * The building of an FEA model of an electric loudspeaker using COMSOL Multiphysics * Validation of this model throughan acoustic measurement systems This paper is in Chinese.

Material Selection and Computational Analysis on DOHC V16 Engine’s Mounting Bracket Using COMSOL Multiphysics

M. V. A. Nag[1]
[1]G.R.I.E.T., Hyderabad, AP, India

Reduction of the engine vibration and the dynamic forces transmitting from engine to the automotive body structure has always been an important part of automotive research. Automobile engineers face the task of creating a mechanism to absorb these vibrations and provide a smooth ride. The usage of Motor Mounts is the best solution for dampening the effects of vibrations and oscillations. This ...

Analysis of Multiphysics Problems Related to Energy Piles

E. Evgin[1], J.A.I. Sedano [1], Z. Fu[1]
[1]University of Ottawa, Ottawa, ON, Canada

Energy piles transfer the mechanical loads from buildings to the ground and serve as heat exchangers. Temperature changes in the ground influence its moisture content. This paper examines the effect of soil moisture content on the shaft resistance of a pile. Tests were carried out in the laboratory to determine the mechanical properties of an interface corresponding to various soil moisture ...

Calibration of Ultrasonic Testing for Faults Detection in Stone Masonry

M. Usai[1], S. Carcangiu[1], G. Concu[2]
[1]Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
[2]Department of Civil Engineering, Environmental and Architecture, University of Cagliari, Cagliari, Italy

In the field of assessment methodologies, particular importance is given to Non-Destructive Testing Techniques, which aspire to achieve the highest number of information about materials and structures without altering their condition. Ultrasonic Testing exploits the transmission and reflection characteristics of mechanical waves with appropriate frequencies passing through the investigated item. ...

Vibration and Acoustic Analysis of a Trussed Railroad Bridge under Moving Loads

R. Costley[1], H. Diaz-Alvarez[1], M. McKenna[1], A. Miller[1]
[1]U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA

Two finite element models have been developed to investigate the acoustic radiation from a Pratt truss train bridge. The first model was a time dependent structural model that determined the vibration response of the structure due to two wheels, representing a single axle, moving across the bridge at constant speed. This model was expanded to include multiple axles to represent a locomotive. The ...

Modeling Fluid-Induced Porous Scaffold Deformation

J. Podichetty Thribhuvan[1], S.V. Madihally[1]
[1]Oklahoma State University, Stillwater, OK, USA

Utilization of bioreactors to regenerate tissues outside the body has been intensely investigated in functional tissue engineering. Various studies have been performed using computational fluid dynamics (CFD) to understand fluid flow within bioreactors while assuming porous scaffold as a rigid structure. However, the physical and mechanical properties of most tissue engineering scaffolds suggest ...

Cellular Scale Model of Stratum Corneum

R. Santoprete[1], B. Querleux[1]
[1]L'Oréal, Paris, France

To better quantify the impact of the morphological and mechanical properties of the main constituents of the stratum corneum (SC, the outermost layer of the skin) on its overall mechanical behavior, we developed a biomechanical model of the SC at a cellular scale, based on in vitro morphological and mechanical data. The sensitivity analysis quantified the relative impact of the mechanical and ...

CO2 Storage Trapping Mechanisms Quantification

A. Nardi[1], E. Abarca[1], F. Grandia[1], J. Molinero[1]
[1]Amphos 21, Barcelona, Spain

The capture and storage of CO2 in deep geological formations is one of the proposed solutions to reduce CO2 emissions to the atmosphere. CO2 is injected as a supercritical fluid deep below a confining geological formation that prevents its return to the atmosphere. In general, four trapping mechanisms are expected, which are of increasing importance through time: (1) structural, (2) residual ...

Development of Magnetic Field Components for the Polarisation Option of the Neutron Spectrometer FOCUS

L. Holitzner[1], U. Filges[1], J.P. Embs[2], T. Fennell[2], T. Panzner[1]
[1]Laboratory for Developments and Methods, Paul Scherrer Institut, Villigen, Switzerland
[3]Laboratory for Neutron Scattering, Paul Scherrer Institut, Villigen, Switzerland

We show a new, favourable space-saving method to host a neutron polarizer in the iron-containing monochromator shielding of a time-of-flight spectrometer for cold neutrons. In this poster you can learn e.g., how to create a robust, homogeneous, rectangular magnetic field (here realized by permanent magnet queues inside an iron tube). The time-of-flight spectrometer FOCUS at the spallation ...

Simulation of Microfabricated Linear Ion Trap

J. Heinonen[1], M. Erdmanis[1], I. Tittonen[1]
[1]Aalto University, Department of Micro- and Nanosciences, Espoo, Finland

We present a simplified 3D model that simulates the operation of a linear microscale integrated ion trap. It employs a set of metalized electrodes, which are formed on top of an insulator layer on silicon substrate. The confinement in all three dimensions is provided by the application of the specific AC and DC voltages to the corresponding trap electrodes. The distribution of the trapping ...