See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

Optics, Photonics and Semiconductorsx

Optical Trapping on Waveguides

O.G. Hellesø [1],
[1] University of Tromsø, Tromsø, Norway

On the surface of an optical waveguide, there is an evanescent field. The evanescent field decays fast and this steep gradient can be used to pull nano- and microparticles down towards the waveguide surface. Radiation forces will propel the particle forward along the waveguide. Trapping ... Read More

Nonlinear Optics in Plasmonic Nanostructures

G. Bachelier [1], L. Olgeirsson [1], S. Waterman [2], J. Sharma [3], E. Dujardin [3], A. Bouhelier [4], S. Huant [1]
[1] Institut Néel, CNRS - Joseph Fourier University, Grenoble, France
[2] Imperial College, London, England
[3] CEMES, CNRS, Toulouse, France
[4] LICB, CNRS – Bourgogne University, Dijon, France

The unique optical properties of plasmon resonances in noble metal nanoparticles have been extensively investigated owing to their ability to enhance the electric field amplitude but also to tailor its spectral and spatial distribution. Among all application domains, nonlinear optics ... Read More

Enhanced Second-Harmonic Generation in AlGaAs Nanoantennas

L. Carletti [1], D. Rocco [1], A. Locatelli [1], C. De Angelis [1],
[1] University of Brescia, Italy

We designed AlGaAs all-dielectric nanoantennas with magnetic dipole resonance at near-infrared wavelengths. These devices are shaped as cylinders of 400nm height and radii varying from 175 nm up to 230 nm. We analyzed volume χ(2) nonlinear effects associated to a magnetic dipole ... Read More

Heating of Metal Nanoparticles on Absorbing Substrates

L. Bergamini [1], O. Muskens [2], N. Zabala [1], J. Aizpurua [3]
[1] UPV/EHU, Bilbao, Spain; Materials Physics Center and CSIC-UPV/EHU, Donostia-San Sebastian, Spain; Donostia International Physics Center, Donostia-San Sebastian, Spain
[2] University of Southampton, Southampton, UK
[3] Materials Physics Center and CSIC-UPV/EHU, Donostia-San Sebastian, Spain; Donostia International Physics Center, Donostia-San Sebastian, Spain

It is well-known that metal nanoparticles (NPs) excited at the plasmon frequency not only exhibit peculiar optical properties (e.g., a peak in the extinction spectrum, an enhanced electromagnetic near-filed) but also heat up [1]. This phenomenon is highly investigated for medical ... Read More

Photonic Crystal Fibers for Visible Light Generation

D. Aydin [1], S. J. Cordette [1], C. Brès [1],
[1] EPFL, Lausanne, Vaud, Switzerland

There has been a growing interest in optical parametric amplifiers (OPA) for light generation and amplification in because of the possibility for arbitrary operation wavelength and wideband tenability [1]. PCFs are of particular interest in such nonlinear optics applications because of ... Read More

Dielectric Adaptive Optical Gels

R. Eisenschmid [1],
[1] OPTIMA pharma GmbH, Schwäbisch Hall, Germany

Adaptive Optics is common sense, since many people use digital cameras with electromechanical iris actors on elastic autofocus lenses. This project tries to create a COMSOL Multiphysics based mathematical model of adaptive optics with electrostatically induced deformation of dielectric ... Read More

Study of Energy Transfer Mechanism for a Synchrotron X-ray Gas Absorber with COMSOL Multiphysics

A. Martín Ortega [1], Y. Dabin [1], T. Minea [2], A. Lacoste [3]
[1] ESRF, Grenoble, France
[2] LPGP, Université Paris-Sud XI, Orsay, France
[3] LPSC, Université Joseph Fourier, Grenoble, France

The high power of X-ray beam delivered by synchrotrons and free electron lasers, up to 240 W/mm2, requires heat load management solutions to obtain the best performance from the optical elements which will shape the beam for its use in the experimental stations [1]. One solution is the ... Read More

Ultrafast Effects in 3D Metamaterials

N. Katte [1], P. Evans [2],
[1] Wilberforce University, Wilberforce, OH, USA
[2] Oak Ridge National Laboratory, Oak Ridge, TN, USA

The extraordinary electromagnetic response of nanostructured material, usually made up of a metallic structures distributed in within a dielectric matrix has attracted a lot of interest in recent years. These materials are technically called metamaterial (MM) since they possess ... Read More

Assessment of Diffuse Optical Tomography Image Reconstruction Methods Using a Photon Transport Model

M. M. Althobaiti [1], H. S. Salehi [2], Q. Zhu [2],
[1] Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
[2] Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, USA

Imaging of tissue with near-infrared diffuse optical tomography is emerging as a practical method to map hemoglobin concentrations within tissue for breast cancer detection and diagnosis. The accurate recovery of images by using numerical modeling requires an effective image ... Read More

Design of Solar Thermal Dryers for 24-hour Food Drying Processes

F. S. Alleyne [1], R. R. Milczarek [1],
[1] Healthy Processed Foods Research Unit, U.S. Department of Agriculture, Albany, CA, USA

Solar drying is a ubiquitous method that has been adopted for many years as a food preservation method. Most of the published articles in the literature provide insight on the performance of solar dryers in service but little information on the dryer construction material selection ... Read More