Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical Analysis and Optimization of a Multi-Mode Interference Based Polarization Beam Splitter

Y. D'Mello [1], E. Elfiky [1], J. Skoric [1], D. Patel [1], D. Plant [1]
[1] McGill University, Montréal, QC, Canada

The progression toward smaller and faster photonic circuits has led to the development of nanophotonic platforms capable of compacting many devices onto an integrated chip. These devices, as well as the input and output grating couplers, are sometimes polarization dependent, which allows for a preferential treatment of different polarizations within the same circuit, especially since the ...

Simulating Surface Plasmons at Metal Surfaces and Its Application in Optoelectronic Devices

L. Wang [1],
[1] Konica Minolta Laboratory, San Mateo, CA, USA

Surface plasmon polaritons (SPP) are guided electromagnetic modes of a metal/dielectric interface. These surface electromagnetic waves arise through the coupling of the incident electromagnetic radiation with the collective charge-density oscillations of the free electrons in a metal. Because of its strong field confinement and enhancement effect, SPP has found a variety of intriguing ...

Analysis of Magnetic Resonance in Metamaterial Structure

C. Rajni[1], and A. Marwaha[2]
[1] Shaheed Bhagat Singh College of Engineering And Technology, Ferozepur, Punjab, India
[2] Sant Longowal Institute of Engineering And Technology, Sangrur, Punjab, India

‘Metamaterial’ is one of the most recent topic in several areas of science and technology due to its vast potential in various applications. These are artificially fabricated materials which exhibit negative permittivity and/or negative permeability. The unusual electromagnetic properties of metamaterial has opened more opportunities for better antenna design to surmount the limitations of ...

Product Design of Macro Optical Clocking by Ray Optics

V. Vinothkumar[1], R. C. Thiagarajan [1],
[1] ATOA Scientific Technologies Pvt Ltd, Bangalore, India.

Optical cloaking was considered as fictional. Recent developments shows that macro scale optical cloaking is practical and functional. Brief review of ray optics based macro optical cloaking concepts are given. COMSOL Multiphysics® software simulations of cloaking devices are detailed. The geometric optics principles used to develop cloak for hiding objects are given. Invisibility of both the ...

Direct and Indirect Coupling Mechanisms in a Chiral Plasmonic System

Zhongyue Zhang [1], Yuyan Chen [1],
[1] School of Physics and Information Technology, Shaanxi Normal University, Xi’an, China

手性等离激元纳米结构被广泛研究并用于生物监测、分析化学和负折射率介质方面。在该结构中直接耦合的机制已经在相关研究中被发现。我们提出由金膜分隔两个金纳米棒(TNMF)的结构(图1),并发现了间接耦合机制。 在 COMSOL Multiphysics® 中,射频电磁波,频域接口用于求解正弦时变电磁场分布,选此接口计算 TNMF 结构的光学响应。插值函数用来设置金的折射率;设置边界条件模拟周期性结构阵列。结果可通过端口2对端口1的响应获得,并可查看每个数据点的电场、电荷等分布。应用程序库中射频模块的“Plasmonic wire grating”教程是初始指导我们计算纳米结构的例子。 用软件模拟圆偏振光照射,得到透射曲线和圆二色性(CD)曲线(图2)。加入金膜的结构产生新模式2。通过 B-K 模型分析电荷分布(图3),发现模式1是直接耦合,模式2是间接耦合。对间接耦合模式,上 ...

Optimal Design for the Grating Coupler of Surface Plasmons

Y. Huang

Mathematics Department, University of California, Los Angeles, CA, USA

We present an optimization procedure to optimize the maximum coupling of free space optical wave to surface plasmon. Shape derivative from shape sensitivity analysis is calculated, and the corresponding partial derivatives of the objective functional with respect to finite number of design variables are derived. An optimal design of the gratings to couple maximum amount of free space photon ...

Forces and Heating in Plasmonic Particles

M. Gonçalves[1], O. Marti[1]
[1]Ulm University - Inst. of Experimental Physics, Ulm, Germany

Plasmonic resonances arising in gold nanoparticles lead to strongly localized near-field enhancements. These enhancements generate strong field gradients that can be exploited in particle trapping. On the other hand plasmonic resonances lead to enhanced absorption and heat generation. Gold nanoparticles have been used to kill cancer cells based on plasmonic heating. We have investigated the ...

Modal Characterization of the Plasmonic Slot Waveguide Using COMSOL Multiphysics

F. Frezza[1], P. Nocito[2], and E. Stoja[1]
[1]Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
[2]MISE, Communication Department, ISCOM, Rome, Italy

We investigate and compare the characteristics of the fundamental guided mode sustained by a subwavelength plasmonic slot waveguide for three types of metals: gold, silver and aluminium. This is done in terms of mode effective index, propagation length, confinement and, as the mode under study is quasi-TEM, we also develop a transmission line model that can be useful in the design of optical ...

Effects of Forced Airflow Cooling on Laser Beam Heating of Volume Bragg Gratings

S. Kaim[1], B. Anderson[1], G. Venus[1], J. Lumeau[1], V. Smirnov[2], B. Zeldovich[1], L. Glebov[1]
[1]CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, USA
[2]OptiGrate Corp, Oviedo, FL, USA

Forced airflow cooling of a Volume Bragg Grating heated by a laser beam was investigated by means of simulation with COMSOL Multiphysics®. In addition to air cooling of unrestricted airflow, a case of airflow directed by limiting glass plates was investigated. A number of temperature distributions and thermal deformations were obtained in simulations for different rates of airflows. Simulations ...

Heterodimensional Charge-Carrier Confinement in Sub-Monolayer InAs in GaAs - new

S. Harrison[1], M. Young[1], M. Hayne[1], P. D. Hodgson[1], R. J. Young[1], A. Strittmatter[2], A. Lenz[2], U. W. Pohl[2], D. Bimberg[2]
[1]Department of Physics, Lancaster University, Lancaster, UK
[2]Institut für Festkörperphysik, Berlin, Germany

Low-dimensional semiconductor nanostructures, in which charge carriers are confined in a number of spatial dimensions, are the focus of much solid-state physics research, offering superior optical and electronic properties over their bulk counterparts. Both two-dimensional (2D) and zero-dimensional (0D) structures have seen wide-ranging applications in laser diodes, solar cells and LEDs to name ...