Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Analyzing the Performance of Lined and Unlined Simplified Cylindrical Cloaks

J. McGuirk and P. Collins
Air Force Institute of Technology, WPAFB, OH, USA

The performance of simplified cylindrical cloaks with various material parameters was investigated. The performance metric was the overall scattering width of the cloak with various objects in the hidden region. COMSOL was used to simulate three cloaks with different material parameters to determine the total field in the simulation domain. For all cloaks simulated in this effort, a PEC-lined ...

Solving the Paraxial Wave Equation using COMSOL

P. Mikulski, K. Mcilhany, and R. Malek-Madani
United States Naval Academy
Annapolis, MD

Here we present and discuss numerical solutions to the paraxial wave equation using COMSOL (2D, PDE, General Form, time-dependent analysis). Ultimately, the goal is to extend this treatment of free-space beam propagation to the case of propagation through a medium that is non-uniform and subject to non-linear effects where the beam itself is modifying the properties of the medium in which it is ...

Analysis of Super Imaging Properties of Spherical Geodesic Waveguide Using COMSOL Multiphysics

D. Grabovi?ki?[1], J.C. González[1], P. Benítez[1], J.C. Miñano[1]
[1]Cedint Universidad Politécnica de Madrid, Madrid, Spain

Negative Refractive Lens (NRL) has shown that an optical system can produce images with details below the classic Abbe diffraction limit. This optical system transmits the electromagnetic fields, emitted by an object plane, towards an image plane producing the same field distribution in both planes. Recently, two devices with positive refraction, the Maxwell Fish Eye lens (MFE) (Leonhardt et al. ...

Super-lattice Effects in Ordered Core-shell Nanorod Arrays Detected by Raman Spectroscopy

A. Alabastri, R. Krahne, A. Giugni, G. Das, R. P. Zaccaria, M. Zanella, I. Franchini, and E. di Fabrizio
Italian Institute of Technology (IIT)
Genoa, Italy

We studied the optical phonon excitations (LO) of ordered arrays of dot/ rod core-shell CdSe/ CdS nanorods by Raman spectroscopy. Upon deposition on planar substrates the nanorods formed super-lattice structures via side-by side assembly into tracks over some microns of length. COMSOL Multiphysics software has been used to calculate the magnitude of the electric field generated by the ...

Designing a Smart Skin with Fractal Geometry

S. Ni, C. Yang Koh, S. Kooi, and E. Thomas
Institute for Soldier Nanotechnologies
Dept. of Materials Science and Eng.
MIT
Cambridge, MA

Recently, the concepts of fractal geometry have been introduced into electromagnetic and plasmonic metamaterials. With their self-similarity, structures based on fractal geometry should exhibit multi-band character with high Q factors due to the scaling law. However, there exist few studies of phononic metamaterials having fractal geometry. COMSOL is used to investigate vector elastic and ...

Modeling of an Optical Black Hole with True Gaussian Beam Incidence

X. Ni[1], A. Kildishev[1], E. Narimanov[1], and L. Prokopeva[2]
[1]Purdue University, West Lafayette, IN, USA
[2]Russian Academy of Sciences, Novosibirsk, Russia

We model an ideal optical black hole device in COMSOL Multiphysics as an electromagnetic scattering problem. The device is illuminated with a Gaussian beam which is focused at a fixed position in horizontal direction (x0) and different positions in vertical direction (y0). The device is modeled as a cylindrical system with a gradient-index shell and absorbing core. Using the classical paraxial ...

Simulation of Bio-medical Waveguide in Mechanical and Optical fields

Y. Xin[1], A. Purniawan[1], L. Pakula[1], G. Pandraud[1], P. J. French[1]
[1]Technology University of Delft, Delft, Netherlands

This paper presents a freestanding waveguide to achieve the goal of detecting anastomosis leakage after colon surgery. The freestanding part is a thin membrane consisting of TiO2 rib and SiN ridge. This freestanding waveguide is designed both mechanically and optically to maintain mechanical stability during fabrication and detection process, and at the same time guarantee the detection ...

Effect of Magnetic Field on MR-Fluid in Ball End Magnetorheological Finishing - new

H. Garg[1], V. S. Negi[1], A. S. Kharola[1], R. Sharma[1]
[1]CSIR - Central Scientific Instruments Organization, Chandigarh, India

Magnetorheological Finishing (MRF) is one of the precision finishing processes in which magnetic field is used to drive abrading forces for Finishing 2D and complex 3D surfaces. In this paper, Ball End Magnetorheological Finishing (BEMRF) has been analyzed for fluid behaviors under the influence of strong magnetic field. Polishing action in MR-fluid depends on magnetization, magnetic intensity, ...

Second Harmonic Generation in Noble Metal Nanoparticles

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet
Laboratoire de Spectrométrie Ionique et Moléculaire, Université Claude Bernard Lyon1, Villeurbanne, France

In this presentation we present our results from modeling the second harmonic generation in noble metal nanoparticles. The model results are compared with experimnental results in order to validate the model.

FEM Simulations of Rod-Type Photonic Crystal Slabs as Resonant Microsystems for Optical Gas Sensors

C. Kraeh, and H. Hedler
Siemens AG, Munich
Munich, Germany

We are developing a solid state gas sensor that combines a small form factor with the high sensitivity of optical gas detection. The gas sensor is based on an optical resonant microsystem that is penetrated by gas molecules. This microsystem consists of an array of vertical rods in air forming a photonic crystal. Light propagates through the photonic crystal along a line defect waveguide. For ...

Quick Search