Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Deformation of Stamp Features with Slanted Walls During Microcontact Printing - new

F. E. Hizir[1], H. M. Al-Qahtani[1, 2], D. E. Hardt[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA
[2]King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

Microcontact printing is a method for depositing patterns of thin films or molecular monolayers on surfaces using a polydimethylsiloxane (PDMS) stamp for selective mechanical contact (Figure 1). Undesired deformation of the stamp features during printing affects printed pattern quality. Hence, stamps need to be well-designed to prevent erroneous prints. Existing investigations identify the ...

Benchmarking COMSOL - Part 2: CFD Problems

Darrell Pepper
Professor of Mechanical Engineering,
University of Nevada - Las Vegas

Using COMSOL 3.5a, a set of benchmark problems requiring the use of the COMSOL Computational Fluid Dynamics (CFD) module has been simulated. Several of the problems include fluid-heat transfer interactions (Computational Heat Transfer - CHT). The four problems are: flow over a 2-D circular cylinder compressible flow in a shock tube incompressible heated flow over a 2-D backward facing step ...

Mathematical Modeling of Glucose Responsive Hydrogels

A. Pareek [1], T. Mathur [2], V. Runkana [1],
[1] Tata Research Development and Design Centre, Tata Consultancy Services, Pune, India
[2] Indian Institute of Technology, Delhi, India

Diabetes mellitus affects 387 million people across the world according to the latest estimates of International Diabetes Foundation. Insulin is one of the major drugs required to keep the glucose level within desired limits in a diabetic patient. Insulin is generally administered to a patient as a subcutaneous injection and consists of two forms namely, basal and bolus. The basal dosage is ...

Modeling of Straight Jet Dynamics in Electrospinning Process

R. Pandya [1], A. Kumar [2], V. Runkana [1],
[1] Tata Research Development and Design Centre, Tata Consultancy Services, Pune, India
[2] Indian Institute of Technology, Delhi, India

Electrospinning is a process where high voltage is applied to produce polymer fibers of nanoscale diameter. Various polymers have been used for this process in molten form or as a solution with an appropriate solvent such as glycerol. The melt solidifies while the solvent evaporates to produce fibers. The fibers produced have properties such as high surface to volume ratio and a molecular ...

Finite Element Model based Optimization of Pulsed Eddy Current Excitation Rise Time

N. N. Bharadwaj [1], V. Arjun [1], B. Purnachandra Rao [1]
[1]Indira Gandhi Centre for Atomic Research, Kalpakkam, India

Non-destructive Evaluation (NDE) techniques are widely used for early detection of defects in engineering components without impairing their future usefulness. Among them, Eddy Current (EC) technique is used for detection of defects in electrically conducting materials and it is known for its high speed inspection and reliability. Conventional EC technique uses sinusoidal excitation and has ...

Software Package for Modeling III-Nitride QW Laser Diodes and Light Emitting Devices

M. V. Kisin[1], R. G. W. Brown[1], and H. S. El-Ghoroury[1]
[1]Ostendo Technologies, Inc., Carlsbad, CA, USA

We present a modeling software package developed at Ostendo Technologies for analysis and design of semiconductor laser and light-emitting diodes. The current database of material parameters supports complete group of III-Nitride alloys used in visible spectrum applications and can be readily extended to all III-V compounds. Self-consistent multi-band quantum-mechanical model for carrier energy ...

Plasma Edge Simulations by Finite Elements using COMSOL

C. Hollenstein, and A. Howling
Ecole Polytechnique Fédérale de Lausanne, Switzerland

Finite elements using COMSOL Multiphysics have been used to simulate the edge plasma in a large area capacitively coupled RF reactor. In order to reduce numerical difficulties simplified reactor edge geometries have been used. First results show the importance of electrostatic double layers within this plasma. In addition the non-uniform behaviour of the plasma sheath around convex and ...

Pump and Ejector Design in Wastewater Treatment Pilot Equipment - new

G. Actis Grande[1], A. Pezzin[1], G. Rovero[1]
[1]Politecnico di Torino, Torino, Italy

Ozone treatment is an oxidative process used in wastewater treatment plant to demolish complex organic molecule. In the case of textile industry is required to adequately remove residual color, demolishing the chromophoric bonds or groups in the dye molecules. A useful method for adding the ozone gas into water and maximize ozone-water mixing to increase mass transfer, is the use of Venturi ...

Optimization of Carbon Nanotube Field Emission Arrays

B. L. Crossley[1], M. Kossler[1], P.J. Collins[1], R. A. Coutu Jr.[1], and L. A. Starman[1]

[1]Air Force Institute of Technology, Wright-Patterson AFB, Ohio, USA

Carbon nanotubes (CNTs) have been proven experimentally to be well suited for field emission applications. An optimized triode configured CNT field emission array is developed using the COMSOL Multiphysics Electrostatics Application to adjust five key physical dimensions to investigate the effects on the enhanced electric field at the CNT emitter tips. The five dimensions studied are CNT ...

Multiphysics Process Simulation of the Electromagnetic-Supported Laser Beam Welding

M. Bachmann, V. Avilov, A. Gumenyuk, and M. Rethmeier
BAM Federal Institute for Materials Research and Testing
Berlin, Germany

The article deals with the magnetically-supported high-power full-penetration laser beam welding of aluminum. A stationary simulation was conducted accounting for the effects of natural convection, Marangoni convection and solid-liquid phase transition as well as an electromagnetic volume source term. An ac magnet below the weld specimen induces eddy currents. Consequently, Lorentz forces occur ...