Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Model and App of Hydrophobic Meshes Used in Oil Spill Recovery

O. Silva [1], E. Coene [1], J. Molinero [1], B. Shafei [1]
[1] Amphos 21 Consulting S.L., Barcelona, Spain

Hydrophobic meshes are a new, promising technique for the recovery of spilled oil in the ocean. They allow to recover and store oil, while filtering it from the surrounding water. They are clean, efficient and can be used in continuously. These meshes have one drawback, however: if they are submerged too deep under the water level, the high pressure will cause presence of water in the recovered ...

Electron Beam Crystallization of Amorphous Silicon Thin Films

S. Saager [1],
[1] Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology (FEP), Dresden, Germany

A promising method for low cost production of efficient silicon thin film solar cells is the electron beam physical vapor deposition (EB-PVD) of high purity amorphous silicon (a-Si) layers with high deposition rates up to 300 nm/s [1] followed by crystallization. This study focuses on EB crystallization of deposited a-Si films in the solid phase regime and justifies observed experimental results ...

Thermal Design of Lithium Sulfur Batteries

R. Purkayastha [1], S. Schleuter [1], G. Minton [1], S. Walus [1], M. Wild [1],
[1] Oxis Energy Ltd, E1 Culham Science Centre, Abingdon, United Kingdom

OXIS Energy Ltd is a pioneer in the research and development of Lithium Sulfur batteries. Scaling up from R&D level coin cells to pouch cells for automotive use, engineering design and thermal management start to become critical. In this study, heat flow at various levels of the cell is investigated. We analyzed different heat flow scenarios of the cell, and found that standard pack arrangements ...

Modeling of Resonant Optical Trapping in a 2D Photonic Crystal Cavity

U.P. Dharanipathy[1], N. Descharmes[1], Z. Diao[1], M. Tonin[1], R. Houdré[1]
[1]Institut de Physique de la Matière Condensée, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Photonic crystals (PhC) are optical nanostructures that are widely known for their strong spatial and temporal confinement of electromagnetic radiation. Here, we study the resonant optical trapping of a single nanoparticle within a hollow circular photonic crystal cavity. The Electromagnetic Waves (emw) interface of COMSOL Multiphysics® was extensively used during the analysis of all our ...

Modeling of Wettability Alteration during Spontaneous Imbibition of Mutually Soluble Solvents in Mixed Wet Fractured Reservoirs - new

M. Chahardowli[1], H. Bruining[1]
[1]Delft University of Technology, Delft, The Netherlands

Mutually-soluble solvents can enhance oil recovery both in completely and partially water wet fractured reservoirs. When a strongly or partially water-wet matrix is surrounded by an immiscible wetting phase in the fracture, spontaneous imbibition is the most important production mechanism. Initially, the solvent moves with the imbibing brine into the core. However, upon contact with oil, as the ...

Simplified CFD Modeling of Air Pollution Reduction by Means of Greenery in Urban Canyons

S. Lazzari [1], K. Perini [1], E. R. di Schio [2], E. Roccotiello [3],
[1] University of Genova, Dept. of Sciences for Architecture, Genova, Italy
[2] University of Bologna, Dept. of Industrial Engineering, Bologna, Italy
[3] University of Genova, Dept. of Sciences of Earth, Environment and Life, Genova, Italy

As known, air quality in urban areas is dramatically affected in particular by the noteworthy presence of respirable suspended particulate matter (such as PM2.5), nitrogen oxides (NOx), carbon monoxide (CO) and hydrocarbons (HC), which are mainly due to traffic-induced emissions. On the other hand, it is also known that vegetation can help restoring the environmental quality of dense urban areas ...

PDT Study Using a Model Incorporating Initial Oxygen Concentration and Blood Flow Increase

R. Penjweini[1], T. C. Zhu[1],
[1] Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA

Introduction: Type II photodynamic therapy (PDT) is an experimental modality for cancer treatment based on the combined action of a photosensitizing drug (photosensitizer), a special wavelength of light and singlet oxygen (1O2) generation; the cell killing is caused by the reaction of cellular acceptors with 1O2. A mathematical model has been previously developed to incorporate the macroscopic ...

Iterative Learning Control for Spatio-Temporal Repetitive Processes

D. Kowalów [1], M. Patan [1]
[1] Institute of Control & Computation Engineering, Zielona Góra, Poland

Recently, due to the dynamically increasing complexity of modern systems, a strong necessity appears for more systematic approaches to high quality control and process monitoring. Requirements imposed by process control in the area of spatio-temporal physical systems also called distributed parameter systems (DPSs) are associated with using very accurate models in which spatial dynamics cannot ...

Modeling the Vanadium Oxygen Fuel Cell

F.T. Wandschneider[1], M. Küttinger[1], P. Fischer[1], K. Pinkwart[1], J. Tübke[1], H. Nirschl[2]
[1]Fraunhofer-Institute for Chemical Technology, Pfinztal, Germany
[2]Karlsruhe Institute for Technology, Karlsruhe, Germany

A two-dimensional stationary model of a vanadium oxygen fuel cell is developed in COMSOL Multiphysics®. This energy storage device combines a vanadium flow battery anode and an oxygen fuel cell cathode. The oxygen reduction reaction generates additional water, leading to a degradation of the catalyst performance over time. A logistic function is introduced to the Butler-Volmer equation in order ...

Optimization of the Slot Dimensions of a Large Air-gap Linear Synchronous Motor - new

F. Giacometti[1], C. R. Lines[1], R. J. Cruise[1]
[1]Texchange Limited, London, UK

A COMSOL Multiphysics® model is used to optimise the slot geometry of a large air-gap linear synchronous motor. Fixed dimensions are used for the pole pitch, stator depth, stator width and air-gap, since the amount of available space is usually limited. A parametric sweep of the slot-width-to-tooth-width ratio is used to find the optimum geometry where the maximum thrust force is produced ...