Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Analysis & Design Optimization of Laterally Driven PolySilicon Electro-thermal Microgripper for Micro-objects Manipulation

T. Pahwa[1], S. Gupta[1], V. Bansal[1], R. Narwal[1], B. Prasad[1], D. Kumar[1]
[1]Electronic Science Department, Kurukshetra University, Kurukshetra, India

Micro-grippers find applications in micro-robotics, microsurgery, micro-fluidics, micro-relays, assembling and miniature medical instrumentation. Actuation principle involved may be electrothermal, electrostatic, piezoelectric, shape memory and electromagnetic. It has been found that thermal actuation provides greater displacement at low voltages when compared to other mechanisms. A 3-D ...

Design and Optimization of Highly Sensitive Single Axis Accelerometer using COMSOL Multiphysics®

Kunal A.Kshirsagar[1], K.Govardhan[1],
[1]VIT University, Sensor System Technology, School of Electronics Engineering, Vellore, Tamil Nadu, India
[2]VIT University, MEMS & Sensor Division, School of Electronics Engineering, Vellore, Tamil Nadu, India

Accelerometers are successfully commercialized MEMS devices. COMSOL Multiphysics® has been used in the modeling, simulation and optimizing of this design. The piezoresistive accelerometer is made up of a square proof mass with flexures supporting it. The piezoresistors are placed near the proof mass and frame ends of the flexure and the springs. There is an elongation or shortening of the ...

Thermomechanical Effects of the Packaging Molding Process on the Chip in Integrated Circuits - new

N. Semmar[1], M. Fournier[1], P. S. Alleaume [2], A. Seigneurin [3], , ,
[1]GREMI-UMR7344, CNRS/University of Orléans, Orléans, France
[2]Collegium Sciences et Techniques, Orléans, France
[3]ST Microelectronics Tours SAS, Tours, France

Usually, in integrated circuits, the chip is brazed on leadframe and then, a polymer resin is molded around to create the packaging. On the first hand, the molding process at high temperatures will induce thermomechanical stress on the chip. As the leadframe, the chip and the braze have all different thermoelastic properties, these stress can be critical for the chip connections. To ...

Simulation of Cellular Traction Force Based Deflection of PDMS Micropillars - new

J. Wala[1], D. Maji[1], S. Dhara[1], S. Das[1]
[1]Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India

Cells are complex entities which not only passively sense external stimuli (viz. chemical, optical or mechanical) but also interact with extracellular matrix (ECM) by regulating cellular behavior such as growth, proliferation, migration, etc. Monitoring cell growth and migration of adherent cells becomes a crucial factor in determining cell-cell and cell-substrate interaction, important for ...

Simulation of DC Current Sensor

K. Suresh, B.V.M.P.S. Kumar, U.V. Kumar, M. Umapathy, and G. Uma
National Institute of Technology Tiruchirapalli, Tamil Nadu, India

A proximity DC current sensor using of a piezo sensed and actuated cantilever beam with a permanent magnet mounted at its free end is designed and simulated in COMSOL Multiphysics. The change in resonant frequency of cantilever is a measure of the current through the wire. The sensor is found to be linear with good sensitivity.

Multiphysics Modeling of Implantable Micro-Electrode for Diagnostic and Therapeutic Applications in Neural Disorders

H. W. Ferose, R. G. Prasath, M. Alagappan, and G. Anju .
PSG College of Technology
Coimbatore
Tamil Nadu, India

Neural disorders like epilepsy, Parkinson’s disease and Alzheimer’s disease have become a major area of concern because of their complexity and the huge number of occurrences. At present, most of the treatments are based on drugs and external nerve stimulation demanding critical care. This study aims at the design and simulation of an implantable micro-electrode which can lead to better ...

Multiphysics FEM Simulations Approach for Development of a MEMS Heat Generator

G. S. Masi[1], S. V. De Guido[1], G. Montagna[2], C. Martucci[2], P. M. Congedo[1], L. Vasanelli [1], M. G. Manera[2], R. Rella[2]
[1]Department of Innovation Engineering, University of Salento, Lecce, Italy
[2]CNR-IMM, Lecce, Italy

Introduction: Accurate fluid temperature control in microfluidic channels is a requirement for many lab-on-chip and micro-reactors.Thin films resistive metal heaters have proven to be the best choice for localizing heating applications with integrated microfluidic systems. A thin platinum layer has been chosen as the metal used to realize the meander because of its positive and linear ...

Hybrid Design Electrothermal Polymeric Microgripper with Integrated Force Sensor

V. Vidyaa[1]
[1]Jawahar Engineering College, Affliated to Anna University, Chennai, Tamil Nadu, India

Microgrippers are typical MEMS devices used to pick, hold and transport micro-objects. Microgrippers are widely used in the field of micro-assembly, micro-surgery and manipulation of micro-particles. Thermal microgrippers are widely used for large displacement, high accuracy and repeatability. In this paper, a hybrid design electrothermal microgripper (Figure 1), based on Poly Methyl ...

Simulation of MEMS Based Pressure Sensor for Diagnosing Sleep Disorders

J. Vijitha[1], S. S. Priya[1], K. C. Devi[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India

Sleep apnea is a type of sleep disorder characterized by pauses in breathing or instances of shallow or infrequent breathing during sleep. There is a need to diagnose sleep apnea since it leads to fluctuations in the oxygen level that in turn affect the heart rate and blood pressure. In order to detect this disorder, a Micro Electro Mechanical System (MEMS) based piezoelectric pressure sensor ...

COMSOL在压阻式柔性压力传感器中的应用

王宗荣 [1,2], 王珊 [1],
[1] 浙江大学,杭州,中国
[2] 香港大学,香港,中国

引言:柔性压力传感器在电子皮肤、智能假肢以及医疗监测诊断等领域发挥着十分重要的作用。因此压力传感器需要很高的灵敏度、较宽的敏感区间及稳定的性能。利用典型有机硅 PDMS 作为支撑层,聚合物 PEDOT: PSS 作为导电感应层制得的高度不均一微突结构的双压敏机制压阻传感器灵敏度达到了 851kPa-1。其探测范围广,性能优异,为解决目前压阻传感器中灵敏度低、敏感压力区间窄的难题提供了新思路。 COMSOL MULTIPHYSICS® 软件的使用:本文利用 COMSOL Multiphysics® 软件建立了不均匀微突结构的压阻式传感器模型,采用了结构力学与电流场两个物理场,通过电子接触对进行多物理场的耦合。研究在指定位移情况下,压阻式传感器电阻与电流的变化,从而得到灵敏度,验证不均匀微突结构压阻式压力传感器的双作用机制。同时,与均一微金字塔结构的压力传感器进行比较 ...