Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Reliability Enhancement of Bio MEMS based Cantilever Array Sensors for Antigen Detection System using Heterogeneous Modular Redundancy

L. S. Sundharam[1]
[1]Kumaraguru college of Technology, Coimbatore, Tamil nadu, India

The objective of the work is to propose a reliability enhancement model for antigen detection system (ADS) using bio MEMS based cantilever array sensors using heterogeneous modular redundancy technique. The reliability of the ADS is expressed in terms of the constituent sub systems which are heterogeneous not only in their respective structures and behaviors but also in their forms. The possible ...

Design Optimization of Piezoelectric Micro-machined Modal Gyroscope

Shambhu Singh[1], Dr. N N Sharma[1]
[1]Birla Institute of Technology and science, Pilani, Rajasthan, India

A solid state Piezoelectric Micro Machined Modal Gyroscope is a vibratory type of gyroscope which sense the motion by voltage induced due to Coriolis force. It utilizes natural frequency of the structure to maximize the displacements and hence maximizing the induced voltage signals for sensing.The mode suitable for gyroscopic motion is 9th mode, which was found to be vibrating at 350.217 kHz. A ...

Design and Simulation of MEMS-based Piezoelectric Accelerometer

Siram Sai Krishna[1], Nuti Venkata Subrahmanya Ayyappa Sai[1], Dr.K.Srinivasa Rao[2]
[1]Lakireddy Bali Reddy College of Engineering, Mylavaram, Andhra Pradesh, India
[2]Professor & HOD, Dept. of Electronics and Instrumentation Engineering, Lakireddy Bali Reddy College of Engineering, Mylavaram, Andhra Pradesh, India

The Micro electro mechanical systems (MEMS) technology provides us a platform to interface between mechanical and electrical components. In this paper, we have designed MEMS accelerometer based on piezoelectric property, and simulated using COMSOL Multiphysics®. The design, which has PZT kept in the annular diaphragm, provides good sensitivity. When this accelerometer is subjected to stress ...

Numerical Investigation of Electroosmotic Flow in Convergent Divergent Micronozzle

V. Gnanaraj[1], V. Mohan[1], and B. Vellaikannan[1]
[1]Thiagarajar College of Engineering, Madurai, Tamilnadu, India

A fundamental understanding of the transport phenomena in microfluidic channels is critical for systematic design and precise control of such miniaturized devices towards the integration and automation of Lab-on- a-chip devices. Electroosmotic flow is widely used to transport and mix fluids in microfluidic systems. Electroosmotic transport in convergent divergent micronozzle is significant in ...

Simulation of Surface Stress Effect on Mechanical Behaviour of Silicon Microcantilever

A. Ricci, E. Giuri, and C. Ricciardi
LATEMAR, Italy

Microcantilevers made of crystal silicon are probably the most diffused type of MEMS because of their simple fabrication and their vast applications. In this presentation we treat the mechanical behaviour of silicon mirocantilevers, and also give an overview of the many application areas that these apply to.

Induced Charge Electroosmosis (ICEO) on a Planar Surface

G. Soni, C. Meinhart, and T. Squires
University of California Santa Barbara

Induced Charge Electroosmosis (ICEO) refers to a fluid flow phenomenon in which an electric field induces a charge cloud (electric double layer) on a polarizable surface and sets up a tangential electric field to move this charge cloud along the surface, which in turn causes a fluid flow pattern. In our case, we considered nonlinear effects such as nonlinear capacitance, surface conduction, ...

Perspectives of Thermo-electro-mechanical Micro Actuators for Micro Switch Applications: Design and Simulation

M. Matmat, M. Al Ahmad, and J. Y. Fourniols
Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS-CNRS), Toulouse, France

In this work, thermo-mechanical simulations employing a 3D finite element analysis (FEA) of a current driven V-shaped actuator is presented. The structure's hot arms consist of polysilicon, which was used as the active material for deflection due to the Joule effect.COMSOL Multiphysics with stationary and parametric solvers was used to calculate the resulting deflection when current is applied. ...

Modeling of Vibrating Atomic Force Microscope´s Cantilever within Different Frames of Reference

E. Kamau, and F. Voigt
University of Oldenburg, Germany

Cantilever vibration modes were simulated with COMSOL Multiphysics. In the 1st approach the model consisted of an excitation piezo, a holder plate and a chip where the cantilever was mounted on. A sinusoidal voltage signal was applied to the piezo in the simulation, which resulted in movements of the holder plate and finally led to the excitation of the cantilever. In the 2nd approach the model ...

Multiphysics System Simulation for MEMS Inertial Sensors

R. Sattler
University of Applied Sciences, Regensburg, Germany

This paper gives an overview of modelling microsensors on geometry and system level. The focus will be on the generation of the multiphysics reduced order system model and the coupling with package and ASIC models. The method is based on modal superposition. This means all the details of the sensor can be considered in a finite element model. The mechanical mode shapes of this model form the ...

Effect of Mass Adsorption on a Resonant NEMS

J. J. Ruz Martinez
Instituto de Microelectronica de Madrid
Tres Cantos
Madrid, Spain

The motion of a resonant NEMS has been widely studied for many different applications such as structural mechanics in engineering, ultra sensitive mass spectrometers or the well known Atomic Force Microscope. The study of the eigenfrequencies of such structures is very important, and nowadays there are good theoretical methods to accurately predict such eigenfrequencies. When a little mass is ...

Quick Search