Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of Laser-Material Interactions for Dynamic Transmission Electron Microscopy Experiments

B.W. Reed[1], T.B. LaGrange[1], G.H. Campbell[1], and N.D. Browning[1,2]
[1]Lawrence Livermore National Laboratory, Livermore, CA, USA
[2]University of California Davis, Davis, CA, USA

The Dynamic Transmission Electron Microscope (DTEM) at Lawrence Livermore National Laboratory is a unique instrument able to capture images of fast-evolving microstructure with exposure times of only 15 ns. This is more than six orders of magnitude faster than conventional in situ electron microscopy and has enabled new insights into phase transformations, chemical reactions, and materials ...

Penetration of Moisture in a Solar Panel Edge Seal

P.K. Mercure[1]
[1]The Dow Chemical Company, Midland, MI, USA

Photovoltaic systems can degrade with moisture. The addition of an edge-seal containing a desiccant can reduce the amount of water reaching the interior. This report discusses the modeling of the water transport into the system to determine the amount of edge seal and desiccant required. The moving freezing front of the Stefan heat-transport problem is used to model a moving moisture front. ...

3D Simulation of Air-Glass Heat Exchange in a Set of Vials

G. Mongatti[1], A. Borelli[1]
[1]Marchesini Group, Pianoro, Italy

In this model a three-dimensional heat transfer analysis was performed by using COMSOL Multiphysics\' Heat Transfer Module. The model is about the heating of a set of vials (Figure 1) in a current of hot air in the laminar regime. We used time dependent studies to predict the thermal behavior of the glass and to estimate the temperatures in the various points of the bottles at various times. ...

AC Electrothermal Characterization of Doped-Si Heated Microcantilevers Using Frequency-Domain Finite Element Analysis

K. Park[1], S. Hamian[1], A. M. Gauffreau[2], T. Walsh[2]
[1]Mechanical Engineering Department, University of Utah, Salt Lake City, UT, USA
[2]Department of Mechanical, Industrial & Systems Engineering, University of Rhode Island, Kingston, RI, USA

This work investigates the frequency-dependent electrothermal behaviors of freestanding doped-silicon heated microcantilever probes operating under the periodic (ac) Joule heating. The transient heat conduction equation for each component (i.e., the low-doped heater region, the high-doped constriction region, and the high-doped leg region) is solved using the general heat transfer module for DC ...

Analysis of Infrared Signature of a Ship Operating in MIR and FIR Bands

A. Pellegrini[1], A. Beucci[1], and F. Costa[1]

[1]ALTRAN Italia, Pisa, Italy

In this paper a methodology for calculating the infrared signature of complex objects is presented. The transient thermal analysis allows us to evaluate the temperature distribution on the investigated object, pointing out which parts tend to be warmer. These temperature values are handled in the post processing phase in order to evaluate the zero range radiance distribution and the radiance of ...

Heat Transfer During a CW Laser Crystallisation Process of a Silicon Thin Film on a Glass Substrate

Bourouga, B.1, Le Meur, G.1, Garnier, B.1, Michaud, J.F.2, Mohammed-Brahim, T.2
1 Laboratoire de Thermocinétique de Nantes
2 IETR – Groupe de Microélectronique-Université Rennes I

Development of new handling microsystems needs integration of field effect thin film transistors made directly on various low temperature substrates, as glass for example, with other functions. Argon laser is used to melt completely and then to crystallize 400 nm thick amorphous silicon films. However, the implementation of this process generates cracking and destruction of the silicon thin film ...

COMSOL Validation Progress on Supercritical Hydrogen Heat Transfer

J. D. Freels
Oak Ridge National Laboratory, Oak Ridge, TN, USA

The only known supercritical hydrogen heat transfer data, at similar conditions to the HFIR CS, was taken by NASA in the 1960s. This rocket-engine test data did not compare well with any computer simulation results.It was hypothesized that the reason for this discrepancy was due to the large heat fluxes in the NASA rocket engines and unique hydrogen fluid properties. Therefore, a need existed to ...

Porous Media Based Model for Deep-Fat Vacuum Frying Potato Chips

A. Warning, A. K. Datta, A. Dhall, and D. Mitrea
Department of Biological and Environmental Engineering
Cornell University
Ithaca, NY

A multiphase porous media model involving heat and mass transfer within a potato chip was implemented in COMSOL 3.5a. The diffusive flux in oil and liquid water was modeled from capillary driven flow while the gas phase was modeled using binary diffusion. A non-equilibrium water evaporation rate was used and Darcy's law for the momentum equation to solve for the convection of each ...

Modeling of HTPEM Fuel Cell Start-Up Process by Using COMSOL Multiphysics

Y. Wang[1], D. Uwe Sauer[1]
[1]Electrochemical Energy Conversion and Storage Systems, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, Aachen, Germany

HTPEM fuel cells are considered to be the next generation fuel cells. The electrochemical kinetics for electrode reactions are enhanced by using PBI membrane at an operation temperature between 160-180 °C comparing to LTPEM fuel cells. But starting HTPEM fuel cells from room temperature to an operation temperature is a challenge. In this work, using preheated air to heat up the fuel cells ...

Thermo-Fluid Dynamics of Flue Gas in Heat Accumulation Stoves: Study Cases

D. Rossi[1], P. Scotton[1]
[1]University of Padova, Department of Geosciences, Padova, Italy

The research aims to clarify some aspects of the thermo-fluid dynamics of woody biomass flue gas, within the twisted conduit inside the heat accumulation stoves, and exposes also some analysis about the heat transport and heat exchange processes. The high temperature flue gas flows in the conduit, releasing heat to the refractory. The heat stored in the refractory is then released to the ...

Quick Search