See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection
Heat Transfer and Phase Changex

Glass Transition of ABS in 3D Printing

M. Rahman [1], N. R. Schott [2], L. K. Sadhu [3],
[1] North South University, Dhaka, Bangladesh
[2] Department of Plastics Engineering, University of Massachusetts - Lowell, Lowell, MA, USA
[3] IRays Teknology Ltd., Dhaka, Bangladesh

In a commercial 3D printer head, plastic ribbon passes through a hot nozzle of an extruder to dispense liquid plastic droplets to construct the model. In this paper a 2D axisymmetric model of a 3D head is considered to study the secondary transition change from below the glass ... Read More

Modeling and Simulation of Thermal Runaway in Cylindrical 18650 Lithium-Ion Batteries

A. M. Melcher [1], C. Ziebert [1], B. Lei [1], M. Rohde [2], H. J. Seifert [2]
[1] Karlsruhe Institute of Technology, IAM-AWP, Karlsruhe, Germany
[2] Karlsruhe Institute of Technology, Karlsruhe, Germany

In this work the coupled electrochemical-thermal model for a lithium-ion battery (LIB) based on porous electrode theory has been extended with contributions coming from exothermic side reactions based on an Arrhenius law to model abuse mechanisms, which could lead to a thermal runaway. ... Read More

Modelling of Pressure Profiles in a High Pressure Chamber using COMSOL Multiphysics

P. S. Rao[1], C. K. Chandra[1]
[1]Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal, India

High Pressure Processing (HPP) is a leading non-thermal food processing technology that is often cited as a major technological innovation in food preservation. Although it is very early to place this emerging technology among the list of breakthroughs in food processing, HPP has started ... Read More

Design and Simulation of a MEMS-Based Flow Sensor Using COMSOL Multiphysics® Software

P. Saikumar [1], Z. C. Alex [1], D. Rajapan [2],
[1] VIT University, Vellore, Tamilnadu, India.
[2] National Institute of Ocean Technology (NIOT), Pallikaranai, Chennai, Tamilnadu, India

A flow sensor based on calorimetric principle is designed using COMSOL Multiphysics® software. The sensor is capable of measuring the velocity from 0 to 1 m/s with a resolution of 0.001m/s. The system works with intrusive type mechanism in which the fluid flows across the sensor and ... Read More

Numerical Heat Transfer Analysis of a Phase Change Material (PCM) - Enhanced Plaster

A. Kylili [1], M. Theodoridou [2], I. Ioannou [2], P. A. Fokaides [1],
[1] Frederick Research Center, Cyprus, Nicosia, Cyprus
[2] University of Cyprus, Nicosia, Cyprus

A time-dependent study was conducted using COMSOL Multiphysics® (Conjugate Heat Transfer interface and Heat Transfer with Phase Change feature) for the numerical investigation of the thermal performance of novel Phase Change Material (PCM)-enhanced plasters for their incorporation in ... Read More

Simulation of PTFE Billet Sintering using COMSOL

A. Roday, and P. Nicosia
Garlock Sealing Technologies
Palmyra, NY

Sintering is an important step in the manufacturing of polytetrafluoroethylene (PTFE) billets. The challenge in heating large billets stems from the inherent low thermal conductivity of PTFE. Existing literature suggests determining maximum heating rate experimentally using recommended ... Read More

Impact of Electrode Surface/Volume Ratio on Li-ion Battery Performance new

S. Das[1], J. Li[2], R. Hui[1]
[1]University of Kansas, Lawrence, KS, USA
[2]Kansas State University, Manhattan, KS, USA

The adoption of micro- and nanostructured electrodes is a promising technique to improve the performance of Li-ion battery, which increases the electrode surface area and improves the efficiency of ion exchange between the electrode and electrolyte. This performance improvement is ... Read More

A Practical Method to Model Complex Three-Dimensional Geometries with Non-Uniform Material Properties Using Image-based Design and COMSOL Multiphysics®

J. Cepeda[1], S. Birla[2], J. Subbiah[2], H. Thippareddi[1]
[1]Department of Food Science & Technology, University of Nebraska, Lincoln, NE, USA
[2]Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA

Geometries with heterogeneous material properties are typically defined as a set of multiple parts, each part representing a different material. However, assembling or defining the individual parts of complex geometries can be difficult. A practical method based on image-based mesh ... Read More

Thermal Analysis of Induction Furnace

A. A. Bhat[1], S. Agarwal [1], D. Sujish[1], B. Muralidharan[1], B. P. Reddy[1], G. Padmakumar[1], K. K. Rajan[1]
[1]Indira Gandhi Center for Atomic Research, Kalpakkam, Tamilnadu, India

Induction furnaces are employed for vacuum distillation process to recover heavy metals after electro-refining operation. Induction furnace of suitable heating rate and cooled by passive means are required to be developed for this purpose. It is planned to set up a mock up induction ... Read More

Simulation of Cascaded Thermoelectric Devices for Cryogenic Medical Treatment new

P. Aliabadi[1], S. Mahmoud[1], R. K. AL-Dadah[1]
[1]Mechanical Engineering Department, University of Birmingham, Birmingham, UK

This study is focused on using a thermoelectric device (TED) as an alternative to the cryogenic liquid for cooling cryosurgical probe used for cancerous tissue ablation. Thermoelectric device, namely Peltier, is a solid state device which converts electric current to thermal gradient. In ... Read More