Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

The Use of COMSOL Multiphysics® Software to Explore Flooding and Rising Dampness Problems Related to Cultural Heritage

H.L. Schellen [1], A.W.M. van Schijndel [1],
[1] Eindhoven University of Technology, Eindhoven, Netherlands

In The Netherlands rising dampness problems due to flooding of rivers and high groundwater levels form an essential treat for monumental buildings and heritage. A number of cases exists where rising dampness problems lead to the deterioration of wall finishes but also of valuable wall paintings in churches and castles. To explore the problem and to look for solutions like drying regimes, ...

Developments in a Coupled Thermal-Hydraulic-Chemical-Geomechanical Model for Soil and Concrete

S.C. Seetharam[1], D. Jacques[1]
[1]Performance Assessments Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium

This paper documents current status in the development of a coupled thermal-hydraulic-chemical-geomechanical numerical suite within COMSOL-MATLAB environment to address soil and concrete applications. The mathematical formulations are based on well-established continuum scale models unifying mass conservation, energy conservation, charge conservation, thermodynamic equilibrium and kinetics and ...

Full Coupling of Flow, Thermal and Mechanical Effects in COMSOL Multiphysics® for Simulation of Enhanced Geothermal Reservoirs

D. Sijacic[1], P. Fokker[1]
[1]TNO, Utrecht, The Netherlands

The effective modeling of enhanced geothermal systems (EGS) requires the coupling of geomechanics, fluid flow and thermal processes. An understanding of the complete system with these coupled processes is vital, not just for reservoir stimulation targeted at enhancing reservoir performance, but also for the understanding, prediction and prevention of induced seismicity. Thermal effects however ...

Numerical Study on the Acoustic Field of a Deviated Borehole with 2.5D Method - new

L. Liu[1], W.J. Lin[1], H.L. Zhang[1]
[1]State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing, China

In this paper, we use the PDE interface of COMSOL Multiphysics® software to implement the 2.5D frequency wave-number domain method to investigate the wave propagation in a deviated borehole penetrating a transversely isotropic formation. A convolutional perfectly matched layer is realized to eliminate the reflections from the artificial truncation boundary. With this method, we can obtain the ...

Transport, Growth, Decay and Sorption of Microorganisms and Nutrients through Porous Media: A Simulation with COMSOL

D. Lopez-Falcon, M. Diaz-Viera, and A. Ortiz-Tapia
Instituto Mexicano del Petroleo, México D.F., Mexico

Transport of microorganisms through porous media governs many phenomena in bioremediation of environmental pollution problems and microbial enhanced oil recovery. The aim of this work is to investigate the effects of some transport parameters on breakthrough curves as well as on spatial distribution of components transported through a porous medium by a fluid phase. Using COMSOL Multiphysics and ...

Numerical Simulation: Field Scale Fluid Injection to a Porous Layer in Relevance to CO₂ Geological Storage

S. Kim[1], S. A. Hosseini[1], S. D. Hovorka[1]
[1]Bureau of Economic Geology, The University of Texas at Austin, Austin, TX, USA

CO₂ geological storage can help to provide a “bridge” from a fossil-fuel dependent system to a more diversified energy portfolio. Pressure monitoring for an injection zone (IZ) and an above-zone monitoring interval (AZMI) has been under operation at a field-scale CO₂ injection site, Cranfield, MS. Recorded pressure data in the AZMI revealed a certain amount of increase with no evidence of direct ...

Energy Pile Simulation – an Application of THM-Modeling - new

E. Holzbecher[1]
[1]Georg-August University, Göttingen, Germany

Energy piles, i.e. heat exchangers located within the foundation piles of buildings, are used for heating of cooling purposes. Although the absolute values of deformations and temperature gradients are low or moderate, the entire setting can be influenced by thermo-hydro-mechanical coupling. The fluctuating thermal regime may affect the deformation of pile and surrounding ground as effect of ...

Modeling Horizontal Ground Heat Exchangers in Geothermal Heat Pump Systems

A. Chiasson
University of Dayton, Dayton, OH, USA

Geothermal heat pumps use the earth as a heat source and sink via a ground heat exchanger (GHX) that consists of a network of buried heat exchange pipes, which can either be installed in vertical boreholes or in shallow horizontal trenches or excavations. The main goal in GHX design is to determine the minimum length of pipe needed to provide adequate fluid temperatures to heat pumps over their ...

Fracture-Matrix Flow Partitioning and Cross Flow: Numerical Modeling of Laboratory Fractured Core Flood

R. Sanaee[1], G.F. Oluyemi[1], M. Hossain[1], B.M. Oyeneyin[1]
[1]Robert Gordon University, Aberdeen, United Kingdom

The contrast between hydro-mechanical behavior of the rock matrix and fracture network systems results in flow partitioning between fracture and matrix systems which is affected by the In-situ stress regime. Fracture flow, Darcy law and free and porous media flow physics interfaces of COMSOL were used in simulating a fractured core flooding test to achieve a better understanding of flow ...

Verification of the Numerical Simulation of Permafrost Using COMSOL Multiphysics® Software - new

E. Dagher[1], G. Su[1], T. S. Nguyen[1]
[1]Canadian Nuclear Safety Commission, Ottawa, ON, Canada

COMSOL® software was used to simulate the conductive heat transfer with phase change in the geological formations encompassed in permafrost surrounding a shallow thaw lake. The purpose of the simulation was to verify the adequacy of COMSOL to model such phenomena by comparing the COMSOL results to those obtained by another FEM model (Ling and Zhang, 2003). The graphical comparison of the ...