Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Coupled Palaehydrogeological Microbial and Geochemical Reactive Transport Model of the Olkiluoto Site (Finland)

P. Trinchero[1], M. Luna[1], J. Molinero[1], G. Román-Ross[1], F. Maia[1], A. Nardi[1], J. Löfman[2], P. Pitkänen[3], L. Koskinen[3]
[1]Amphos 21 Consulting, Barcelona, Spain
[2]VTT Energy, Finland
[3]Posiva Oy, Olkiluoto, Finland

Olkiluoto at Eurajoki has been selected as the final repository site for spent nuclear waste in Finland. This area has been affected, at regional scale, by land-uplift processes related to the ice withdrawal. These events have resulted in a complex and stratified heterogeneous hydrochemical system. The objective of this work was to develop a robust paleohydrogeological reactive transport (PRT) ...

An Innovative Reactive Transport Modeling Approach for the Chemical Evolution of a HLW Cell in the Callovo-Oxfordian Formation

J. Molinero[1], D. García[1], M. Grivé[1], A. Nardi[1]
[1]Amphos 21 Consulting, Barcelona, Spain

Andra (The French National Radioactive Waste Management Agency) envisages the safe disposal of High-Level Waste (HLW) and Intermediate-Level Long-Lived Waste (IL-LLW) in deep geological storage using a multi-barrier system. To ensure the containment of radioactivity, the principle of storage is based on a clay formation with low permeability, homogeneity and continuity (i.e Callovo-Oxfordian ...

Short-Term Behavior and Steady-State Value of BHE Thermal Resistance - new

S. Lazzari[1], A. Priarone[2],
[1]DIN, University of Bologna, Bologna, Italy
[2]DIME-TEC, University of Genova, Genova, Italy

The transient behavior of the thermal resistance of single and double U-tube borehole heat exchangers (BHEs) is investigated numerically by means of COMSOL Multiphysics® software with reference to the 2D cross section of usually employed BHEs. The study is performed in a dimensionless parametrical form, the parameters being the ratio between the thermal conductivities of grout and ground, the ...

Underground Coal Fire Extinction Model Using Coupled Reactive Heat and Mass Transfer Model in Porous Media

S. Suhendra[1], M. Schmidt[1], and U. Krause[1]
[1]Laboratory II.2: “Flammable Bulk Materials and Dusts, Solid Fuels”, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany

Green house gases emission associated with natural hazard of underground coal seam fire has been recognized as a worldwide problem leading to global warming threat. Therefore, in this paper a model to study underground coal fire is presented and the results will be devoted to strategic development of coal fire extinction technology within the framework of Sino-German Coal Fire Research ...

Use of COMSOL as an Educational Tool Through its Application to Ground Water Pollution

A. Modaressi-Farahmand-Razavi[1]
[1]MSS-Mat Laboratory, CNRS, Ecole Centrale Paris, Châtenay Malabry, France

Ensuring the quality of underground water and controlling its quantity is of major concern for the population. Therefore, this subject attracts many students from different specialties at different levels of their curriculum. In fact, the pedagogic objectives of the course may be different according to the level or/and interest of the students and COMSOL is used due to its versatility. In this ...

Safe Storage Parameters During CO2 Injection Using Coupled Reservoir-Geomechanical Analysis

T.I. Bjørnarå[1], E. Aker[1], and E. Skurtveit[1]
[1]NGI, Oslo, Norway

Safe short term storage of CO2 depends mainly on structural and solubility trapping. On longer term, mineral trapping is also contributing to the trapping of CO2. To be able to investigate the importance of these different storage mechanisms, a finite element model for simulation of CO2 injection has been developed in COMSOL Multiphysics®. The model describes and solves for two-phase flow ...

COMSOL Multiphysics, TOUGHREACT and Numerrin Comparison in Some Modelling Tasks of Spent Nuclear Fuel Disposal

A. Itälä[1], V-M. Pulkkanen[1], M. Laitinen[2], M. Tanhua-Tyrkkö[1], and M. Olin[1]
[1]VTT Technical Research Centre of Finland, Espoo, Finland
[2]Numerola Oy, Jyväskylä, Finland

Bentonite clay is used as a protecting barrier around both the copper capsules in deposition holes and in deposition tunnels in the KBS-3 final disposal concept for spent nuclear fuel. The performance of these bentonite barriers will be investigated both experimentally and by modelling. Both approaches are needed, because for example the time span in question (hundred thousand years or even ...

Coupling COMSOL’s Subsurface Flow Module with Environmental Geochemistry in PHREEQC

L. Wissmeier[1], and D. A.Barry[2]
[1]GIT HydroS Consult GmbH, Freiburg, Germany
[2]EPFL, Lausanne, Switzerland

We present a software tool for simulations of subsurface flow and solute transport in combination with comprehensive intra-phase and inter-phase geochemistry. The software uses PHREEQC as a reaction engine to COMSOL Multiphysics®. The coupling with PHREEQC gives major advantages over COMSOL’s built-in reaction capabilities, i.e., the soil solution is speciated from its element composition ...

Coupled Gas Flow and Thermal and Reactive Transport in Porous Media for Simulating Waste Stabilization Phenomena in Semi-Aerobic Landfill

H. Ishimori, K. Endo, T. Ishigaki, H. Sakanakura, and M. Yamada
National Institute for Environmental Studies
Tsukuba, Ibaraki

Semi-aerobic landfill has interesting structure that passively provides the atmospheric oxygen into landfilled waste due to the heat convection generated by the decomposition of landfilled waste. There are limited studies on the mechanisms of the oxygen transport. This paper presents the governing equations and parameter estimation methods for the numerical simulation of the gas fluid flow and ...

Impact Assessment of Hydrologic and Operational Factors on the Efficiency of Managed Aquifer Recharge Scheme

M.A. Rahman[1], P. Oberdorfer[1], Y. Jin[1], M. Pervin[1], E. Holzbecher[1]
[1]Department of Applied Geology, Geoscience Center, University of Göttingen, Göttingen, Lower Saxony, Germany

Due to increased demands on groundwater accompanied by increased drawdowns (ca. 2-3 meters/year), technologies that use alternative water resources have been suggested for Dhaka City, Bangladesh. Preliminary studies show that managed aquifer recharge (MAR) would help in optimal use of available water resources and to reduce adverse effects of pumping in the Dupitila aquifer of the city. In this ...