Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical Model For Rocking Of Mono-Pile In A Porous Seabed

D-S. Jeng, X. Luo, and J. Zhang
Division of Civil Engineering, University of Dundee, Dundee, Scotland, UK

Offshore wind and wave energy industries have developed considerably in the last two decades. Most offshore energy structures used in the existing projects are mono-piles in shallow water due to simplicity of installations, design and control. Numerous research for the design and modeling of offshore wind energy system have been carried out in the past. However, most previous studies have been ...

Building Energy Simulation Using the Finite Element Method

J. van Schijndel[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

In order to predict, improve and meet a certain set of performance requirements related to the indoor climate of buildings and the associated energy demand, building energy simulation (BES) tools are indispensable. Due to the rapid development of FEM software and the Multiphysics approaches, it should possible to build and simulate full 3D models of buildings regarding the energy demand. The ...

A Computational Approach for Optimizing the First Flyer Using COMSOL Multiphysics

A.H. Aziz[1], H. Pourzand[1], A.K. Singh[1]
[1]Pennsylvania State University, University Park, PA, USA

COMSOL Multiphysics software was used to structurally optimize the Wright brothers’ flyer. The flyer was drawn in SolidWorks, imported and meshed in COMSOL. COMSOL Solid Mechanics module was used to analyze the flyer. Four of the sixteen struts were removed yet the structural integrity of the flyer was maintained. COMSOL Laminar Flow module was used to compute the aerodynamic forces and ...

Pervaporation Membrane Module Design with Simulation

J. Boon [1], H. Heuver [2], F. Velterop [2], H. van Veen [1], A. de Groot [1],
[1] ECN, Petten, The Netherlands
[2] Pervatech, Rijssen, The Netherlands

Pervaporation is the selective evaporation of one component in a liquid mixture using a membrane. HybSi pervaporation membranes consist of porous ceramic support tubes with a thin selective layer on the inside or feed side. Modules for 7 and 19 membrane bundles (surface area up to 2.0 m2) are studied in COMSOL Multiphysics® for the absence of pressure drop on the permeate side. With a water flux ...

Wind Flow Modeling of Area Surrounding the Case Western Reserve University Wind Turbine

M. Fernandes[1], D. Matthiesen[1]
[1]Case Western Reserve University, Cleveland, OH, USA

The CWRU Turbine is a research turbine located in a urban campus in Cleveland, Ohio. This location may create turbulence, resulting in a possible loss in energy generation. This research attempts to answers the question of whether the wind flow is affected by the buildings or not. The surrounding buildings, which vary in height from 20 to 40 meters, may affect the wind patterns at the hub ...

Numerical Investigation of Swirl Flow in Curved Tube with Various Curvature Ratio

A. Kadyirov[1]
[1]Research Center for Power Engineering Problems of the Russian Academy of Sciences, Kazan, Russia

The influences of curvature effects and swirl intensities for Non-Newtonian viscous fluid flow in a curved tube have been numerically investigated by using COMSOL Multiphysics®. The twisted tape, which are located directly in front of the curved part, are used as swirl flow generators. The tape is twisted until it reaches an angle of 90 degrees and turns right. Swirling flow, getting into the ...

Simulated Rheometry of a Nonlinear Viscoelastic Fluid

A. Czirják[1], Z. Kőkuti[1], G. Tóth-Molnár[1], P. Ailer[2], L. Palkovics[2], G. Szabó[1]
[1]University of Szeged, Szeged, Hungary
[2]Kecskemét College, Kecskemét, Hungary

In certain cases, the accuracy of measurements with a rotational rheometer can be influenced by inefficient thermal management, by the heat generated in the sample, or by rod-climbing due to the Weissenberg effect. We investigate the effect of these phenomena with simulations in COMSOL Multiphysics®. Our model is based on the axial symmetric (2D) formulation of the two-phase flow with the ...

Modeling the Effect of Headspace Steam on Microwave Heating of Mashed Potato - new

J. Chen[1], K. Pitchai[1], D. Jones[1], J. Subbiah[1]
[1]University of Nebraska-Lincoln, Lincoln, NE, USA

Introduction: Domestic microwave ovens are widely used to heat food products, because of rapid and convenient heating. Nonuniform heating is the biggest issue in microwave heating process, which also causes food quality and safety issues. Microwave heating models are promising tools to assist in developing food products that deliver uniform heating. Due to intensive heating, moisture evaporation ...

Computational Modelling of Fluid Dynamics in Electropolishing of Radiofrequency Accelerating Cavities - new

H. Rana[1], L. Ferreira[2]
[1]Loughborough University, Leicestershire, UK
[2]European Organisation for Nuclear Research (CERN), Genéve, Switzerland

Electropolishing is an electrochemical process that radiofrequency accelerating cavities undergo in order to improve their inner metal surface finishing. This is performed prior to their installation into particle accelerators, in order to enhance their accelerating properties. Using COMSOL Multiphysics® software it was possible to model the process throughout the cavity and study the fluid ...

Simulation Tests of the Constitutive Equation of a Nonlinear Viscoelastic Fluid

A. Czirják [1], Z. Kőkuti [1], G. Tóth-Molnár [1], G. Szabó [1], P. Ailer [2], L. Palkovics [2]
[1] University of Szeged, Szeged, Hungary
[2] Kecskemét College, Kecskemét, Hungary

The determination of the constitutive equation of a nonlinear viscoelastic fluid is a challenging task, especially if a space-dependent equation is needed [1]. In this contribution, we present simulations of certain rheometry tests of a high-viscosity nonlinear viscoelastic fluid with a rotational rheometer [2]. We compare the measured values with the computed values of a few selected ...