Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Microvascular Dysfunction in PAD Patients - new

K. Cluff[1], H. Mehraein[1], B. Jayakumar[2]
[1]Department of Bioengineering, Wichita State University, Wichita, KS, USA
[2]Department of Industrial & Manufacturing Engineering, Wichita State University, Wichita, KS, USA

Background: Peripheral arterial disease (PAD) is characterized by atherosclerotic blockages of the arteries supplying the lower extremities, which cause a progressive accumulation of ischemic injury to the skeletal muscles of the lower limbs. Despite revascularization treatment intervention some PAD patients require follow up secondary treatment due to a continued decline in limb function, ...

Mixing Layer Analysis in Variable Density Turbulent Flow

A.E. Alshayji[1]
[1]Department of Mechanical Engineering, College of Engineering and Petroleum, Kuwait University, Safat, Kuwait

In this study, numerical simulations of mixing in turbulent flow, subject to a change in density, are performed. Attention is focused on the binary mixing between two streams of fluid in which a variable density step are formed due to a difference in the temperature. This binary mixing problem performed by assuming low Mach number flow. The results demonstrate the variable density effects and ...

Wind Evaporation On Wetted Surfaces Under Uncertainty Conditions

J.M. Gozalvez-Zafrilla, M.C. Leon-Hidalgo, J. Lora-Garcia, A. Santafe-Moros, and J.C. Garcia-Diaz
Universidad Politecnica de Valencia, Valencia, Spain

Brine disposal from desalination plants placed in inland areas far from sea is an important problem. Evaporation ponds can be used for reducing the waste to solid state but they require huge amounts of land. Evaporation using arrays of wet surfaces can minimize the land requirements. One characteristic of the methods based on natural evaporation is the uncertainty associated to the influent ...

Two Dimensional Blood Shear Modeling in a Blood Cooling Catheter

R. Sikorski[1], B. Chapman[1], T. Merrill[1]
[1]Rowan University, Glassboro, NJ, USA

A CFD cardiac catheter model was developed to determine the potential for blood hemolysis during administration of local therapeutic hypothermia using a CoolGuide catheter. In vivo animal studies have shown that mild hypothermia may reduce reperfusion injury often associated with heart attack. The CoolGuide Catheter System (CCS) delivers rapid local cooling through a cardiac catheter, reducing ...

Modeling of the Reduction Stage during the Continuous Refining of Copper in a Packed Bed Reactor

F. Mansilla[1], L. Voisin [2]
[1]Advanced Mining Technology Center, Chile University, Santiago, Chile
[2]Department of Mining Engineering, Advanced Mining Technology Center, Chile University, Santiago, Chile

Throughout history, the copper pyrometallurgical processes have been carried out mostly in discontinuous or batch systems. In recent decades new continuous technologies have been developed but focused only on Smelting and Converting stages leaving aside the Refining one. In 2002 a novel technology was proposed by the Department of Mining Engineering of Chile University which consists in two ...

Development of a Multiphase, Multispecies Droplet Evaporation Model for Optimization of Desiccation Preservation Techniques

A. Sinkevich[1], S. Bhowmick [1], M. Raessi[1]
[1]University of Massachusetts Dartmouth, North Dartmouth, MA, USA

Biopreservation deals with the protection and storage of complex biologics such as proteins, lipids, and recently, mammalian cells. One preservation method, known as lyopreservation, involves placing a biologic inside a water droplet with some type of sugar excipient (sucrose, trehalose, etc.) and drying the solution convectively. We are currently developing a model that couples the two-phase ...

Validation for a Quick and Reliable Procedure for Centrifugal Pumps Using Frozen Rotor Methodology in COMSOL Multiphysics®

D. Manenti[1], G. Tanghetti[1], R. Roveglia[1]
[1]Metelli SPA, Cologne (BS), Italy

Single stage centrifugal pumps are widely used in several engineering fields such as: room conditioning, energetic cycles, automotive industry, home care, etc. Thus, the possibility of simulate their behaviour, in terms of pressure increase and mass flow rate, is helpful in reducing prototyping costs in the first design stages. The Rotating Machinery Interface is a dedicated tool implemented ...

Investigating the Impacts of Hydrogeological Parameters on DSI Efficiency through Numerical Simulation

Y. Jin[1], E. Holzbecher[1], S. Ebneth[2]
[1]Department of Applied Geology, GZG, Georg-August- University of Göttingen, Göttingen, Germany
[2]Hölscher Wasserbau, Haren, Germany

Düsensauginfiltration (DSI),‘nozzle-suction-infiltration’, is a new method for dewatering that avoids groundwater abstraction from the aquifer. Drawdown is achieved via pumping of groundwater at upper abstraction section, meanwhile, all the pumped water is injected through the same borehole, but in greater depth. We use COMSOL Multiphysics® for the development of a 2D model that ...

Simulations of Micropumps Based on Tilted Flexible Structures - new

M. J. Hancock[1], N. H. Elabbasi[1], M. C. Demirel[2]
[1]Veryst Engineering, LLC., Needham, MA, USA
[2]Pennsylvania State University, University Park, PA, USA

Pumping liquids at small scales is challenging because of the principle of reversibility: in a viscous regime, the flow streamlines through a fixed geometry are the same regardless of flow direction. Recently we developed a class of microfluidic pump designs based on tilted flexible structures that combines the concepts of cilia (flexible elastic elements) and rectifiers (e.g., Tesla pump). We ...

Study of Supercritical Coal Fired Power Plant Dynamic Responses for Grid Code Compliance - new

A. Gil-Garcia[1], I. Kings[1], B. Al-Duri[1]
[1]University of Birmingham, School of Chemical Engineering, Edgbaston, Birmingham, UK

In clean coal technologies, improving energy conversion efficiency is one of the most important directions. Compared to traditional subcritical power plants, pressure-increased supercritical power plants improve the plant energy efficiency from 35% up to 45%. This work presents a study of the thermodynamic behaviour of the water cycle in coal-fired boilers in response to the changes in energy ...

Quick Search