Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Using COMSOL Multiphysics to Model Viscoelastic Fluid Flow

B.A. Finlayson
Department of Chemical Engineering, University of Washington

Viscoelastic fluids have first normal stress differences even in rectilinear flow. Thus, they are more complicated than purely viscous non-Newtonian fluids modeled as a power-law model or Carreau model. Viscoelastic effects must be included when modeling the flow of polymer melts and concentrated polymer solutions in situations for which the normal stresses matter. The extrudate swell problem ...

Indoor Air Quality Modeling

D. Pepper
University of Nevada, Las Vegas

In this presentation we consider the modeling of indoor air quality, and pollutant transport. Today's aspects of indoor air quality unfortunately must include the potential risk of an attack with biological weapons. In this presentation, we illustrate the effect of such an attack. In the present work, we also present numerical results for indoor air quality for a specific building, namely ...

Hydraulic Design of Activated Sludge Tanks with CFD

A. J. Bosma, and B. A. Reitsma
Tauw bv, Deventer, The Netherlands

The hydraulic design of wastewater treatment plants (WWTP) is usually based on general guidelines and experience. Research and development in this field is mainly focused on understanding and improvement of the biological processes. In this article we present modeling of the activated sludge tanks of the wastewater treatment plants in Amsterdam-West and Eindhoven. For both locations, a number of ...

On The Modelling Of Electrowetting Using COMSOL Multiphysics

J.F. Dannenberg, J. Brinkert, and E.A.D. Lamers
Reden b.v., Hengelo (ov.), The Netherlands

One of the upcoming technologies in displays is that of the electrowetting displays. A surface can be covered by a colored oil or transparent water using a voltage to increase or decrease the wettability of the surface. A simulation of the behavior of such a thin film of oil in water, forced to move due an electrostatic field, has been made using the level-set, two-phase flow application mode ...

Turbulent Compressible Flow in a Slender Tube

K.O. Lund[1], C.M. Lord[2]
[1]Kurt Lund Consulting, Del Mar, CA, USA
[2]Lord Engineering Corp., Encinitas, CA, USA

Pressure-drop experiments were conducted for the turbulent, compressible flow of air in a small, slender tube, and modeled with COMSOL heat transfer module, and analytically. A scalar integration variable is introduced which integrates the mass velocity [kg/m²s] over the inlet area and iteratively equates this to the input mass flow [kg/s]. For computation, the temperature specification is ...

Miscible Viscous Fingering of Pushed Versus Pulled Interface

S. Pramanik[1], M. Mishra[1]
[1]Indian Institute of Technology Ropar, Rupnagar, Punjab, India

Viscous fingering (VF) instability has been extensively studied over past several decades in the context of various industrial, environmental and chemical processes. We try to model miscible VF at pushed or pulled interfaces using COMSOL Multiphysics®. We study the effect of the positive and negative log-mobility ratio on the fingering instability. Numerical simulation has been performed in 2D ...

3D Multiphysics Analyses to Support Low Enriched Uranium (LEU) Conversion of HFIR - new

P. K. Jain[1], J. D. Freels[1]
[1]Oak Ridge National Laboratory, Oak Ridge, TN, USA

Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory as part of an effort sponsored by the U.S. Department of Energy’s Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors program. COMSOL Multiphysics® models ...

The Flow of a Thin liquid Film Past a Cylinder

M. Sellier
Fraunhofer ITWM, Kaiserslautern

This paper presents a numerical study of the flow of a thin liquid film past a circular cylinder. It is investigated in the framework of the lubrication approximation and the corresponding governing equations, formulated in a weak form, are solved in the COMSOL environment. The effect of the diameter of the circular cylinder on the shape of the free surface is explored and potentially ...

Flow Modeling in a Flat Membrane Module

B. Balannec1, J. M. Gozálvez-Zafrilla2, D. Delaunay1, and M. Rabiller-Baudry1
1UMR - "Sciences Chimiques de Rennes", Université de Rennes, Rennes, France
2Departamento de Ingeniería Química y Nuclear, Universidad Politécnica de Valencia, Valencia, Spain

A CFD calculation of the complex three dimensional flow in a flat membrane module (Rayflow X100, Orelis- Novasep) was made under the conditions of a typical fouling study in order to compare velocity distribution to fouling deposit (with charcoal). The flow was turbulent in the inlet/outlet pipes of the module and laminar in the channel containing the membrane. The local Reynolds number was ...

Numerical Analysis of Conjugate Heat Transfer in Foams

N. Bianco[1], R. Capuano[1], W.K.S. Chiu[2], S. Cunsolo[1], V. Naso[1], M. Oliviero[1]
[1]DETEC, Università degli Studi Federico II, Napoli, Italy
[2]Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA

A conjugate conductive-convective-radiative discrete model useful for the study and the simulation of heat transfer in a ceramic or metallic foam is presented. A Generation-based Technique is used for the foam representation, using the Weaire-Phelan structure and heat transfer is studied using the COMSOL Multiphysics. The computational domain is made up by a single cell and a fictitious inlet ...

Quick Search