Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Design of Cooling System for Electronic Devices Using Impinging Jets

P. Lin[1], C. Chang[2], H. Huang[3], and B. Zheng[4]
[1]Mechanical and Aerospace Eng., Rutgers, The State University of New Jersey, Piscataway, NJ
[2]FTR Systems (Shanghai) Inc., Shanghai, China
[3]PolarOnyx, Inc., San Jose, CA
[4]School of Mechatronics Eng., University of Electronic Science and Technology of China, Chengdu, China

The heat sink designs using impinging liquid jets, which form stagnation flows, feature uniform heat transfer coefficients, and provide thin thermal boundary layers, are studied to reduce the heat from GPUs. Three different designs using central, micro, and uniform-cross-section (UCS) central jets are studied and simulated in COMSOL. The efficiency factors, defined as the ratio of total ...

Finite Element Study of the Mass Transfer in Annular Reactor - new

Y. M. S. El-Shazly[1], S. W. Eletriby[1]
[1]Alexandria University, Alexandria, Alexandria, Egypt.

The annular reactor is a very useful design to carry many chemical reactions. In this study, COMSOL Multiphysics® software was used to study the isothermal mass transfer from the inner side of the outer tube of the annular reactor in the range of 200

Aerothermal Simulation of a Refrigerated Truck Under Open/Closed-Door Cycles

P. Namy [1], A. Oury [1], M. Youbi-Idrissi [2],
[1] SIMTEC, Grenoble, France
[2] AIR LIQUIDE, Jouy en Josas, France

Heat transfer inside a refrigerated truck is a key phenomenon that governs the temperature inside the truck and the regulation of the cooling system. Up to now, a lot of experimental studies ([Tso et al., 02]) have been carried out to assess the effect of opening the door and to minimize the external heat transfer with fan air curtain. Together with AIR LIQUIDE, the world leader in gases, ...

Fluid-Thermal Analysis of an Inverter with Air Cooling

R. V. Arimilli[1], A. H. Nejad[1], K. Ekici[1]
[1]The University of Tennessee, Knoxville, TN, USA

A new simple air-cooled inverter design is numerically investigated using COMSOL Multiphysics® software. The thermal-fluid analysis is based on a three-dimensional conjugate heat transfer model in which the flow field is assumed to be laminar. A rigorous mesh convergence was performed to ensure that the overall energy balance error is within engineering accuracy while the computational cost is ...

Hydrophone Acoustic Receiver Modeling: Turbulent Flow Modeling and Acoustic Analysis - new

D. Groulx[1], A. Bharath[1], S. Campbell[1]
[1]Department of Mechanical Engineering, Dalhousie University, Halifax, NS, Canada

The field of underwater acoustics research is constantly growing with the ongoing improvement of acoustic measuring techniques. An acoustic hydrophone receiver is a passive listening device which is widely used in biological research and sonar technology. The hydrophone however suffers from turbulence generated noise created by its presence in ever faster flow. This work aims to analyze the ...

Impact of Electro-Convection (EC) on Heat Transfer in Liquid-Filled Containers

A. Pokryvailo [1],
[1] Spellman High Voltage Electronics Corporation, Hauppauge, NY, USA

Electric field can bring liquid in motion and thus influence heat transfer. Electro-convection (EC) can be caused by electric forces acting on a liquid, even in absence of space charge. Here, we studied heat transfer in a metal vessel filled by oil, with a submersed high voltage electrode serving as source of heat. Physics involved are Electrostatics and Laminar Flow with Heat Transfer. ...

Change in the Flow Rate Through a Deformed Valve

D. Kekejian[1], Y. Martinez[1]
[1]ITESO, Tlaquepaque, Jalisco, Mexico

In this work, a new design is suggested which functions both as a pipe for fluid transfer and as a valve which decreases the flow of the fluid in the opposite direction in case there are pressure fluctuations in the pipe. Therefore, we call it a "Deformed Valve". To design the structure, we had to use different geometric shapes and calculate the velocity of the fluid for each shape to determine ...

Iterative Learning Control for Spatio-Temporal Repetitive Processes

D. Kowalów [1], M. Patan [1]
[1] Institute of Control & Computation Engineering, Zielona Góra, Poland

Recently, due to the dynamically increasing complexity of modern systems, a strong necessity appears for more systematic approaches to high quality control and process monitoring. Requirements imposed by process control in the area of spatio-temporal physical systems also called distributed parameter systems (DPSs) are associated with using very accurate models in which spatial dynamics cannot ...

Calculating the Dissipation in Fluid Dampers with Non-Newtonian Fluid Models

A. Forberger [1],
[1] Gamax Laboratory Solutions Ltd., Budapest, Hungary

Introduction Present paper gives a comparison of the Upperconvected Maxwell (UCM) and the Oldroyd-B model for the calculation of dissipation in high shear-rate cases of viscodampers. When polymeric liquid is considered that part of energy that is irreversible can not be calculated in the typical way. For fluids where the separation into a solvent and a polymer part is not available the ...

Entropic Evaluation of Dean Flow Micromixers

P. S. Fodor[1], M. Kaufman[1]
[1]Cleveland State University, Cleveland, OH, USA

In this work we investigate computationally the use of spiral channels at Reynolds numbers from 25 to 900 as a mixing structure (Figure 1) using COMSOL Multiphysics, the CFD Module, and the Chemical Species Transport physics. In this system, the centrifugal forces experienced by the fluid as it travels along the curved trajectory induce counter-rotating flows. The presence of these transversal ...