Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical Investigation of Swirl Flow in Curved Tube with Various Curvature Ratio

A. Kadyirov[1]
[1]Research Center for Power Engineering Problems of the Russian Academy of Sciences, Kazan, Russia

The influences of curvature effects and swirl intensities for Non-Newtonian viscous fluid flow in a curved tube have been numerically investigated by using COMSOL Multiphysics®. The twisted tape, which are located directly in front of the curved part, are used as swirl flow generators. The tape is twisted until it reaches an angle of 90 degrees and turns right. Swirling flow, getting into the ...

Comparison of Industrial Agitation for Batch Reacting Vessel Mixing in Bioethanol Fermentation

H. Rana [1],
[1] Loughborough University, United Kingdom

This paper presents the investigation into the phenomena during batch reactor vessel mixing comparing agitation equipment; the Rushton turbine and the Marine propeller; in the production of bioethanol by yeast fermentation. The key factors addressed in selecting equipment were fluid vector flow, energy dissipation resulting in shear damage to yeast cells, agitation power consumption, critical ...

Modeling of Silicon Transport into Germanium Using a Simplified Crystal Growth Technique

F. Mechighel[1][3], B. Pateyron[1], M. El Ganaoui[1], S. Dost[2], and M. Kadja[3]

[1]Laboratory SPCTS UMR CNRS, ENSCI, Limoges University, Limoges, France
[2]Crystal Growth Laboratory, Department of Mechanical Engineering, University of Victoria, British Columbia, Victoria, Canada
[3]Department of Mechanical Engineering, University of Constantine, Constantine, Algeria

A numerical simulation study, using COMSOL Multiphysics®, was carried out to examine the temperature and concentration fields in the dissolution process of silicon into germanium melt. This work utilized a simplified configuration which may be considered to be similar material configuration to that used in the Vertical Bridgman growth methods. The concentration profile for the SiGe sample ...

The Microgeometry of Pressure Seals - new

R. P. Ruby[1], G. Kulkarni[2], U. Kanade[1]
[1]Noumenon Multiphysics Pvt. Ltd., Pune, Maharashtra, India
[2]Oneirix Engineering Laboratories Pvt. Ltd., Pune, Maharashtra, India

Seals or gaskets that are compressed between walls of a container are important to many industrial applications. Understanding the performance of such seals requires an understanding of the microscopic geometry of the sealing surfaces, because the fluid seeps around the undulations of such surfaces. This paper presents strong computational evidence that the microgeometry of such surfaces depends ...

Computational Study on Transition of Oil-Water Flow Morphology due to Sudden Contraction in Microfluidic Channel - new

J. Chaudhuri[1], S. Timung[1], T. K. Mandal[1], D. Bandyopadhyay[1]
[1]Indian Institute of Technology Guwahati, Guwahati, Assam, India

The flow morphology of two immiscible fluids in a microfluidic device finds numerous applications such as emulsification, synthesis of nanomaterials [1], lab-on-a-chip devices and biological analysis [2]. It offers many advantages over the conventional macroscopic devices because of its availability for higher surface to volume ratio, ability to handle small volume of fluids, easier process ...

Validation of DNS Techniques for Dynamic Combined Indoor Air and Constructions Simulations Using an Experimental Scale Model

T. van Goch, and A. van Schijndel
Eindhoven University of Technology, Eindhoven, Netherlands

This paper presents a study on the application of Direct Numerical Solving (DNS) techniques using an experimental scale model. COMSOL Multiphysics is promising in solving dynamic heat and air transport. The experiments can be extremely useful as benchmark for CFD codes.

Modeling of Laminar Flow Static Mixers

N. Elabbasi[1], X. Liu[1], S. Brown[1], M. Vidal[2], M. Pappalardo[2]
[1]Veryst Engineering LLC, Needham, MA, USA
[2]Nordson EFD, East Providence, RI, USA

Laminar flow static mixers are accurate, inexpensive fluid mixing devices that can handle a wide range of fluids and mixing proportions. They have a wide range of industrial applications, especially in the consumer product, pharmaceutical, biomedical, and petrochemical industries. A good mixing quality is obtained when the outlet of the mixer has no concentrated volumes of either mixed materials ...

In Silico Evaluation of Local Hemodynamics Following Vena Cava Filter Deployment

J. Ferdous[1], M. Ghaly [2], V. B. Kolachalama [3], T. Shazly[1,4]
[1]Biomedical Engineering Program, University of South Carolina, Columbia, SC, USA
[2]Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA
[3]Charles Stark Draper Laboratory, Cambridge, MA, USA
[4]Department of Mechanical Engineering, University of South Carolina, Columbia, SC, USA

Inferior vena cava (IVC) filters have become essential components in deep vein thrombosis treatment to prevent preventing pulmonary embolisms. Filter efficacy relies on maintaining IVC patency by preventing filter-induced thrombosis following clot capture. A computational model has been developed to determine whether a candidate filter design elicits hemodynamic patterns that promote thrombus ...

Boundary Value Effects on Migration Patterns in Hydraulically Fractured Shale Formations - new

T. Aseeperi[1]
[1]Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA

During the hydraulic fracturing process, there can be possible re-activation of closed/sealed faults and natural fractures in the formation, which may lead to changes in the boundary conditions of the reservoir. While study models of shale gas formations have utilized the concept of a closed reservoir in order to optimize the production of gas in the well-bore, this assumption cannot be adopted ...

Numerical Investigation of Micronozzle Performance for Various Nozzle Geometries - new

P. A. Haris[1], T. Ramesh[1]
[1]National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu, India

Design and manufacture of thrusters for producing very low thrust force in the range of milli or micro newtons using micronozzles has been actively developed in the last decade. The nature of propellant flow in such micronozzles differs from that of macro nozzles. In micronozzles, viscous effect dominates; hence the flow is always in laminar regime with high viscous losses. Objective of this ...