Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

An Innovative Reactive Transport Modeling Approach for the Chemical Evolution of a HLW Cell in the Callovo-Oxfordian Formation

J. Molinero[1], D. García[1], M. Grivé[1], A. Nardi[1]
[1]Amphos 21 Consulting, Barcelona, Spain

Andra (The French National Radioactive Waste Management Agency) envisages the safe disposal of High-Level Waste (HLW) and Intermediate-Level Long-Lived Waste (IL-LLW) in deep geological storage using a multi-barrier system. To ensure the containment of radioactivity, the principle of storage is based on a clay formation with low permeability, homogeneity and continuity (i.e Callovo-Oxfordian ...

Modeling Maillard Reaction and Thermal Transformations During Bread Baking

D. Papasidero[1], F. Manenti[1]
[1]Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Milano, Italy

One big challenge for the food industry is to predict and optimize flavors. The Maillard reaction occurs in food matrices containing carbohydrates and proteins under specific operating conditions. The presented research couples thermal and kinetic modeling to the bread baking process, an ideal field to study this complex set of reactions responsible for many bread flavors. The thermal model ...

Numerical Study of Smoldering Combustion of Activated Carbon in Ⅱ Iodine Absorber - new

T. Liang[1], M. Liu[1], X. Liu[1], Z. Meng[1]
[1]Safety Engineering, Zheng Zhou University, Zheng Zhou, Henan, China

Iodine absorber is a widely used purification equipment for purifying air in a nuclear power plant. In China, the common type is Ⅱ iodine absorber. Impregnated activated carbon is the main absorber within the iodine absorber. Because of the decays exothermic of radioactive iodine, heat is generated in the adsorption process. Carbon is a combustible material. Moreover, air is always supplied in ...

Transient CFD Investigation of a Photocatalytic Multi-tube Reactor

S. Denys [1], J. van Walsem [1], J. Roegiers [1], S. Lenaerts [1],
[1] University of Antwerp, Antwerp, Belgium

As in industrial countries, people spend most of their time indoors and the stringent heat-insulation measures in combination with deficient ventilation have a negative impact on indoor air quality, one approach for abating indoor air pollution is the integration or retrofitting of a photocatalytic oxidation or PCO reactor into continuous flow. PCO technology is very cost-effective, efficient ...

A Finite Element Analysis on the Modeling of Heat Release Rate, as Assessed by a Cone Calorimeter, of Char Forming Polycarbonate

D. Statler[1], and R. Gupta[2]
[1]Mid-Atlantic Technology, Research and Innovation Center, South Charleston, WV, USA
[2]Department of Chemical Engineering, West Virginia University, Morgantown, WV, USA

During the pyrolysis and combustion of polymers, heat is released and is typically measured with a cone calorimeter to better assess the polymer’s flammability. Modeling heat release rate, as assessed by cone calorimetry, has not been extensively studied for char-forming polymers, such as, polycarbonate. Here we determine the heat release rate with the help of a one-dimensional transient finite ...

Diffusion Modeling in TGA in Context of CO2 Gasification of Char

G. Samdani[1], S. Mahajani[1], A. Ganesh[1], P. Aghalayam[2], R. K. Sapru[3], D. K. Mathur[3]
[1]Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
[2]Indian Institute of Technology Madras, Chennai, India
[3]UCG Group, IRS, ONGC, Chankheda, Ahmadabad

The Thermo- Gravimetric Apparatus (TGA) is often used for kinetics determination. In TGA setup, gasification reaction may be limited by the reach (diffusion) of the gasification agent to the internal surfaces of the char particles. In addition to this, after some time, ash is formed between the bulk of the gas and the upper surface of char. The present modeling exercise is aimed at examining the ...

Turbulent Compressible Flow in a Slender Tube

K.O. Lund[1], C.M. Lord[2]
[1]Kurt Lund Consulting, Del Mar, CA, USA
[2]Lord Engineering Corp., Encinitas, CA, USA

Pressure-drop experiments were conducted for the turbulent, compressible flow of air in a small, slender tube, and modeled with COMSOL heat transfer module, and analytically. A scalar integration variable is introduced which integrates the mass velocity [kg/m²s] over the inlet area and iteratively equates this to the input mass flow [kg/s]. For computation, the temperature specification is ...

Simulation and Experimental Analysis of Drug Release Rates from Magnetic Nanocomposite Spheres - new

L. Saeeednia[1], H. Mehraein[2], F. Abedin[1], K. Cluff[2], R. Asmatulu[1]
[1]Department of Mechanical Engineering, Wichita State University, Wichita, KS, USA
[2]Department of Bioengineering, Wichita State University, Wichita, KS, USA

Targeted drug delivery systems have been wildly studied in cancer therapy due to the toxicity of most of chemotherapeutic drugs. Nanoparticles can be attached to the small molecules of the drugs and serve as drug carriers to deliver the drug molecules into the area of interest. In this research, polymeric microspheres containing biodegradable poly(D, L-lactide-co-glycolide) (PLGA), magnetic ...

Dried Reagent Resuspension for Point of Care Testing (Analysis at the Patient Bedside)

M. Huet [1],
[1] Department of Biotechnology, CEA/Université Grenoble-Alpes, Grenoble, France

A microfluidic component was designed to collect blood from a finger prick by capillary flow and to perform biological analysis. It was used to perform ABO blood typing experiments in one step, the blood drop deposit, by agglutination of red blood cells (RBC) using embedded dried reagents. The present study is a first step in the modeling of the whole agglutination assay. Blood typing ...

数值模拟牺牲阳极法阴极保护电位分布

万通 [1], 雍兴跃 [1], 肖宁 [1],
[1] 北京化工大学,北京,中国

研究结果表明,海水中钢结构设备的腐蚀问题触目惊心,通常会造成设备损坏、性能降低。由此可见,控制腐蚀是一项十分重要的任务。 钢结构设备的防腐保护主要采用阴极保护和涂层保护两种方式,然而,由于涂层自身不可避免的缺陷以及施工过程中导致的缺陷,腐蚀仍将在以上造成的缺陷处发生。因此,在接触海水的部位,为了消除涂层缺陷而造成的腐蚀,通常根据钢结构的实际情况和使用状态,采用阴极保护的方法。电位是阴极保护工程中,对控制和监视阴极保护效果进行评价的一项重要指标,因而,非常有必要去了解被保护设备表面上的电位分布。 使用Comsol进行阴极保护数值模拟计算时,步骤如下: (1)选择物理场 “模型向导”>“三维”>“二次电流分布”>“稳态”>“研究”; (2)建立模型 在COMSOL中按照实际尺寸进行建模; (3)输入参数 模拟所需参数:1)温度T:298.15K; 2)电解质(海水 ...