Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Optimal Design of Slit Resonators for Acoustic Normal Mode Control in Rectangular Rooms

S. Floody[1], R. Venegas[2], and F. Leighton[3]
[1]Universidad de Chile, Facultad de Artes, Departamento de Música y Sonología, Licenciatura en Sonido, Santiago, Chile
[2]University of Salford, Acoustics Research Centre, Salford, UK
[3]Universidad Tecnológica de Chile Inacap, Sede Pérez Rosales, Santiago, Chile

The present article presents a method to redistribute the acoustic modes of a rectangular enclosure in the low frequency range using slit resonators. The objective of the present work is to compare different strategies of optimal design in order to determine the dimensions of the resonators. The method of the finite elements will be used to model the acoustic physical behavior of the room. In ...

Numerical Simulations of Ultrasonic Non Destructive Techniques of Masonry Buildings

S. Carcangiu[1], B. Cannas[1], M. Usai[1], and G. Concu[2]
[1]Department of Electric and Electronic Engineering, Cagliari, Italy
[2]Department of Structural and Infrastructural Engineering and Geomatics, Cagliari, Italy

An experimental program has been developed, with the purpose of evaluating the reliability in building diagnosis and characterization of an integrated analysis of several parameters, associated with acoustic waves propagating through the material. The Direct Transmission Technique has been applied. In this paper we developed a numerical model using the Transient Acoustics-Piezoelectric ...

Using COMSOL to Support a Cost-Effective, Non-Destructive Evaluation Approach for Predicting Bolt Failure in Highway Bridges

A. Elyea, B. Doubek, G. Hubbard, and D. Ozevin
Department of Civil Engineering
University of Illinois at Chicago
Chicago, IL

The development of a quantitative nondestructive evaluation method, as an alternative to visual inspection, for inspecting pre-tensioned bolts in fracture critical bridges is presented. In order to understand the ultrasonic behavior of a wide variety of bolt geometries used in bridges, numerical models of nine different bolt geometries were developed. The numerical models included the ...

Design of Traveling Wave Ultrasonic Vibration Disk for Nano-particles in Liquid Dispersion

J. Muraoka, and T. Suzuki
Yamagata Research Institute of Technology

The traveling wave ultrasonic vibration disks for dispersion of particles were designed by using of FEM analysis. The vibration disks are required specific vibration pattern, which contains three nodal lines. The vibration disk thickness was calculated to be matched the resonance frequency of bolted langevin type transducer and the specific vibration pattern. The alignment of the transducer was ...

Vibration and Acoustic Analysis of a Trussed Railroad Bridge under Moving Loads

R. Costley[1], H. Diaz-Alvarez[1], M. McKenna[1], A. Miller[1]
[1]U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA

Two finite element models have been developed to investigate the acoustic radiation from a Pratt truss train bridge. The first model was a time dependent structural model that determined the vibration response of the structure due to two wheels, representing a single axle, moving across the bridge at constant speed. This model was expanded to include multiple axles to represent a locomotive. The ...

Seismic Control of a Structure Using Laminated Rubber Bearings - new

R. Sugumar[1], C. S. Kumar[2], T. K. Datta[3]
[1]Sharda University, Greater Noida, Uttar Pradesh, India
[2]MVN University, Palwal, Haryana, India
[3]Indian Institute of Technology Delhi, New Delhi, Delhi, India

Earthquakes have always been a threat to the safety of buildings, sometimes even causing fatality due collapse of the structure. Various methods have evolved in the recent past to control/reduce the response of a structure subjected to earthquake forces. One of the widely used passive control methods is Base Isolation System. This paper discusses the study of the response of the base isolated ...

Analysis of the Acoustic Response of a Railroad Bridge

K. Koppenhoefer[1], S.Yushanov[1], and M.H. McKenna[2]

[1]AltaSim Technologies, LLC, Columbus, Ohio, USA
[2]U.S. Army Engineering Research and Development Center

Aging infrastructure requires frequent inspections to assess their structural integrity. However, the large amount of existing infrastructure, and the distance between these structures present significant challenges to inspectors. Acoustics-based technologies represent a simple, and relatively inexpensive, technique to monitor the integrity of a structure. To develop these techniques, designers ...

On The Use of a Diffusion Equation Model for Sound Energy Flow Prediction in Acoustically Coupled Spaces

Y. Jing, and N. Xiang
Rensselaer Polytechnic Institute, Troy, NY, USA

This paper studies sound energy flows through an aperture across two coupled spaces using a diffusion equation model. The so-called double sloped sound energy decay is believed to be caused by the sound energy exchange through the aperture coupling the two rooms. The room diffusion equation is first solved by COMSOL, then the time dependent energy flow is visualized via COMSOL arrow plotting, ...

Simulation Analysis of Acoustic Radiation Force under Ultrasound Exposure and Effect to Microbubbles in Flow

T. Ito
Masuda Laboratory
Tokyo University of Agriculture & Technology

This paper is in Japanese.

Quartz Transducer Modeling for Development of BAW Resonators

L.B.M. Silva[1], E.J.P. Santos[1]
[1]Laboratory for Devices and Nanostructures, Electronics and Systems Department, Universidade Federal de Pernambuco, Recife, PE, Brasil

Transducer optimization is a key aspect for successful development and deployment of advanced sensors, especially when designing 3D structures for harsh environments. For piezoelectric transducers, plate thickness determines the operating frequency of the resonator, which is frequently tuned in the shear thickness vibration mode. Quartz has been the material of choice for the fabrication of bulk ...

Quick Search