Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Utilization of COMSOL Multiphysics® Java API for the Integration of Composite Material Properties Through a Customized User Interface - new

R. Malav[1]
[1]Indian Institute of Technology Madras, Chennai, Tamil Nadu, India

Introduction: Usage of Composite Materials properties is rapidly gaining acceptance in various industries such as aircraft manufacturing, automotive, healthcare, etc. Its main strengths are light weight material, great strength and durability, strength related to weight, corrosion resistance and design flexibility. In the process of modeling and simulation, many a time a user wants to use ...

Study & Modeling of 'Acoustic Matching Layers' for Ultrasound Imaging Probes Through Pulse-Echo FEM Simulation - new

L. Spicci[1]
[1]Esaote SpA, Florence, Italy

Ultrasound Imaging probes are specific devices that require a very detailed design of acoustic impedance match for the stack of layers that form the probe head (1,3). These are typically made of silicone rubber, special epoxy resins, polyurethanes and, of course, piezoelectric materials. The acoustic impedance, measured in Rayls, have to be matched similarly to an electric circuit (2), from a ...

Linear Water Wave Propagation around Structures

L. Martinelli, and A. Lamberti
Universita di Bologna, Italy

Objective of this contribution is to show how to implement the Mild Slope Equations with COMSOL Multiphysics. These equations are commonly used to study the propagation of waves in harbors. Some interesting features are presented, namely the use of weak terms (used for the modelling of the source term); the evaluation of a smooth phase gradient from the complex dependent variable; a robust ...

FEM Analysis of Flamelet Wrinkling in a Diffusion Flame - new

Y. Li[1], T.C. Lieuwen[2], J. Zhou[1], H. Cao[1]
[1]Zhengzhou University, Zhengzhou City, Henan Province, China
[2]Georgia Institute of Technology, Atlanta, GA

One can hardly get the exact analytic solution of a full time-dependent convection-diffusion equation, for describing the dynamics of a non-premixed flamelet. The analytic solution of the linearized form with such a model was studied by MATLAB®. And also, a numerical computation was made with the linearization model in COMSOL Multiphysics® software, to provide a perfect accordance with the ...

An Acoustical Finite Element Model of Perforated Elements

P. Bonfiglio[1][2] and F. Pompoli[1][2]
[1]Materiacustica S.r.l., Ferrara, Italy
[2]Engineering Department, University of Ferrara, Ferrara, Italy

The present work deals with a numerical investigation of resonating systems used for noise control applications. In literature one can find analytical models based on fluiddynamics concepts for evaluating losses occurring across the holes of the perforates. In the paper an acoustical formulation based on the equivalent dissipative fluid approach will be analyzed. It will be firstly applied to ...

FEM Simulation of Generation of Bulk Acoustic Waves and their Effects in SAW Devices

A.K. Namdeo[1], N. Ramakrishnan[2], and H.B. Nemade[1]
[1]Department of Electronics and Communication Engineering, Indian Institute of Technology Guwahati, Guwahati, India
[2]Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, India

This paper presents finite element method (FEM) simulation study of the generation of bulk acoustic waves (BAWs) and their effect on the performance of surface acoustic wave (SAW) devices, using COMSOL Multiphysics. A SAW delay line structure using YZ-cut lithium niobate substrate is simulated. The radiation of the bulk waves in all angles into the interior of the substrate is analyzed. The bulk ...

Parametric Simulation of PZT Diameter to Hole Ratio for Optimized Membrane Displacement

A. Arevalo [1], D. Castro [1], D. Conchouso [1], I. G. Foulds [2]
[1] Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Saudi Arabia
[2] The University of British Columbia, School of Engineering, Okanagan Campus, Saudi Arabia

For our simulation we used the Piezoelectric Devices interface. The structure was set with (clamped) fix constraint boundaries to both ends. The bottom electrode was set to be the ground for the electrostatic physics and the top electrode was set to be a Terminal with potential of 10V. A parametric sweep study was set to change the geometry, the parameters to change was the hole diameter (Holed) ...

PVDF Piezoelectric Nanofibers as Hair Cell Substitutes: A Feasibility Study

C. R. Pérez [1], J. J. Santiago-Avilés [2],
[1] Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
[2] Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA

Sensorineural hearing loss is the most common sensory deficit in the world, and within this category damage or loss of the primary sensory cells of the inner ear, known as hair cells is the most common cause [1]. Partial hearing loss is addressed by the use of hearing aids, electronic devices that greatly amplify sound directly into the user's ear, but for more severe cases cochlear implants are ...

Ultrasound-assisted Microfluidic Devices: Insights and Optimization of Sono-microreactors

F. J. Navarro-Brull [1], P. Poveda [2], J. Ramis [2], R. Gómez [1],
[1] Departament de Química Física, Universidad de Alicante, Alicante, Spain
[2] Departament de Física, Enginyeria de Sistemes i Teoria del Senyal, Universidad de Alicante, Alicante, Spain

Possible drawbacks of microreactors are inefficient reactant mixing due to the predominance of laminar flow and clogging (when solid-forming reactions are performed or solid catalyst suspensions are used). Ultrasound has been successfully implemented not only to prevent these problems but also for its well-known mixing and particle-dispersion effects. Several configurations have been used for ...

安装在有限大障板上的轴对称扬声器特性的近似计算方法

陆晓 [1], 温周斌 [1],
[1] 浙江中科电声研发中心,嘉善,浙江,中国

使用 COMSOL Multiphysics® 仿真轴对称扬声器一般可采用 2D 轴对称模型,但在这种坐标系下无法建立扬声器测量中常用的矩形障板模型,而选择计算安装在无限大障板上扬声器的声特性,其仿真计算结果又与常见的标准障板上的测量结果在中低频段存在较大差异。 为了使无限大障板上的仿真结果与标准障板(或其它有限大障板)上的测量结果相一致,提出一种方法,利用 COMSOL 软件的 Parameter Sweep 功能,通过多次进行 2D 轴对称的电磁场、结构力学和声学三场耦合的扬声器仿真计算及相应后处理,得到安装在有限大障板上的扬声器正前方的声特性。 采用该方法可在较短时间内比较准确地计算得到安装在任意形状的有限大障板上的扬声器的声压级和谐波失真等特性。如图1和图2所示,采用该方法得到的声压级和总谐波失真曲线(红色),与测量结果(黑色)趋势和细节都比较一致。 ...