Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Support-Q Optimisation of a Trapped Mode Beam Resonator - new

T. H. Hanley[1], H. T. D. Grigg[1], B. J. Gallacher[1]
[1]Newcastle University, Newcastle-Upon-Tyne, UK

Introducing a disorder into a finite periodic oscillatory system induces the presence of a 'trapped mode': a mode in which the displacement field is localised to the region of the disorder. A main inhibitor to MEMS resonators achieving a high quality (Q) factor is energy radiation through the support to the substrate. The trapped modes present a way to tune this to a minimal value. An initial ...

Boundary Conditions for the Diffusion Equation Model in Room-acoustic Prediction

Y. Jing, and N. Xiang
Graduate program of Architectural Acoustics, School of Architecture, Rensselaer Polytechnic Institute, Troy, NY, USA

This note proposes a modified boundary condition for the diffusion equation model to predict the reverberation times and sound pressure distributions in enclosures.While previous diffusion equation models usually only have good performances for a certain range of absorption surfaces, the modified diffusion model yields more satisfactory results for both low and high absorption surfaces.An example ...

Nondestructive Testing of Composites Using Model Based Design

E. Nesvijski[1]
[1]ACOUSTICS@MBD CONSULTANTS, LLC, Westborough, MA, USA

There is a practical interest among composite materials manufacturers to high-speed accurate non-destructive evaluation (NDE) technology for voids inspection when these voids are natural components of such complex structures like resin insulated layer of double-sided copper-clad laminates. Model based design (MBD) of NDE system is one of principal solutions for voids inspection in such composites ...

Simulation of a Piezoelectric Loudspeaker for Hearing Aids and Experimental Validation - new

G. C. Martins[1], P. R. Nunes[1], J. A. Cordioli[1]
[1]Federal University of Santa Catarina, Florianópolis, SC, Brazil

The use of piezoelectric materials in hearing aid loudspeakers, also called receivers, presents technical and economic advantages such as reducing the number of parts of the system and its manufacturing cost. However, the performance of such systems is still not competitive when compared to traditional electrodynamic loudspeakers. In order to achieve an appropriate performance, one option is to ...

Ultrasound Propagation in Viscoelastic Material Guides

Castaings, M.1, Predoi, M.V.2, Hosten, B.1 1 Laboratoire Mécanique Physique, Univ. Bordeaux 1, UMR CNRS 5469, Talence, France
2 Catedra de Mecanica, Universitatea Politehnica Bucuresti, Bucuresti, Romania

Wave propagation in elastic waveguides is a problem of constant interest from the last decades. Several numerical approaches exist. The most intuitive uses time-marching routines that solve the equations of dynamic equilibrium and supply displacements of the structure nodes as time functions. This procedure is usually time and memory consuming due to huge number of temporal iterations required ...

Analysis of Sound Propagation in Lined Ducts by Means of a Finite Element Model

D. Borelli[1] and C. Schenone[1]
[1]DIPTEM, University of Genova, Genova, Italy

The present paper describes the results of a Finite Element Model used to analyze sound propagation in lined ducts. By means of a numerical model it was possible to predict the insertion loss inside rectangular lined ducts in a frequency range from 250 Hz to 4000 Hz. The model was validated by a comparison with experimental data obtained in accordance to ISO 11691 and ISO 7235 standards. The ...

Numerical Shape Optimization of Photoacoustic Sample Cells: First Results

B. Baumann1, B. Kost1, M. Wolff1,2, H. Groninga2, T. Blöß1, and S. Knickrehm1
1Hamburg University of Applied Sciences, Hamburg, Germany
2PAS-Tech GmbH, Zarrentin, Germany

First results in the automatic shape optimization of a photoacoustic sample cell are described. The aim is to maximize the sensor’s signal strength. The approach considers all shapes that can be represented by a number of axis-symmetrical truncated cones which are connected in a continuous way. In addition, the cell is subjected to certain constraints (e.g. the laser beam is not blocked during ...

Identification of Noise Sources by Means of Inverse Finite Element Method

M. Weber[1], T. Kletschkowski[1], and B. Samtleben[2]
[1]Helmut-Schmidt-University Hamburg, Germany
[2]Airbus Germany

An inverse finite element method for noise source identification in an aircraft cabin is presented. If all sound sources are located on the boundary of the cabin, the equation system resulting from a matching FE model can be re-sorted in such a way that computation of the unknown boundary data is possible from measurement data taken in the cavity. The method is first validated using a simplified ...

Linear Water Wave Propagation around Structures

L. Martinelli, and A. Lamberti
Universita di Bologna, Italy

Objective of this contribution is to show how to implement the Mild Slope Equations with COMSOL Multiphysics. These equations are commonly used to study the propagation of waves in harbors. Some interesting features are presented, namely the use of weak terms (used for the modelling of the source term); the evaluation of a smooth phase gradient from the complex dependent variable; a robust ...

Transient Heat Transfer Effects from a Flapping Wing

Lind, R.J., Abedian, B.
Department of Mechanical Engineering Tufts University, Medford, Massachusetts

This presentation is a numerical study of fluid flow around a two-dimensional rigid flapping plate and its effects on the resultant transient heat transfer effects on the solid interface. In this study, a flat inflexible thin plate surrounded by air undergoes sinusoidal angular motion from one end while the other end is kept stationary, simulating a flapping motion. The two-dimensional ...

Quick Search