Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

On the Influence of Cancellous Bone Structure upon the Electric Field Distribution of Electrostimulative Implants - new

U. Zimmermann[1], R.Bader[2], U. van Rienen[1]
[1]Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
[2]Department of Orthopaedics, University Medicine Rostock, Rostock, Germany

Since the 1980s, the accelerating effect of electromagnetic fields on bone regeneration is used to treat complicated fractures and bone diseases. At the University of Rostock, an electrostimulative hip revision system is developed, basing on the method of Kraus-Lechner. This method requires an electric fields between 5 and 70 V/m. The bone used for the simulations consisted of two homogenous ...

Dynamic Simulation of a Coaxial Magnetic Gear Using Global ODE's and the Rotating Machinery, Magnetic Interface

M. Ostroushko [1], W. Zhang [1], W. M. Rucker [1],
[1] Institute of Theory of Electrical Engineering, University of Stuttgart, Stuttgart, Germany

The coaxial magnetic gear is a good alternative to classic mechanical gears. The magnetic gear has high mechanical durability, overload protection and lower noise, than a mechanical gear [1,2]. A static model of a magnetic gear [3,4] is used for simulation of the magnetic fields and mechanical forces in the steady state. For the dynamic characteristic of the magnetic gear, i.e. a run-up, slowing ...

Progress in Numerical Simulation of HIIPER Space Propulsion Device

P. Keutelian[1], A. Krishnamurthy[1], G. Chen[1], B. Ulmen[1], G.H. Miley[1]
[1]University of Illinois at Urbana-Champaign, Champaign, IL, USA

HIIPER is an experimental space propulsion device using a helicon and an IEC as a plasma generation and acceleration stage, respectively. There is an experiment in progress, but for true rapid iteration and to model the performance of the engine, COMSOL is a strong candidate for fulfilling these roles and continuing with the project until its production phase. The simulation is built with very ...

Calibration of MHD Flow Meter using COMSOL Multiphysics

S. Sahu[1], R. P .Bhattachryay[1], E. R. Kumar[1]
[1]Institute for Plasma Research, Bhat, Gandhinagar, Gujarat, India.

There is limited option for non-intrusive flow measurement of liquid metals at high temperature. Liquid metal flowing in a conduit along with the transverse magnetic field induces emf in the liquid metal. The emf developed; which has linear dependency on flow velocity; can be used for flow velocity estimation. In case of conducting conduit the emf can be measured at the conduit wall. The main ...

Simulating Experimental Conditions of the HIIPER Space Propulsion Device

A. Krishnamurthy[1], G. Chen[1], B. Ulmen[1], D. Ahern[1], G. Miley[1]
[1]University of Illinois at Urbana - Champaign, Urbana, IL, USA

The Helicon-Injected Inertial Plasma Electrostatic Rocket (HIIPER) is a two-stage electric propulsion system comprising of a helicon plasma source and an inertial electrostatic confinement (IEC) device for plasma production and acceleration, respectively. Several diagnostics such as a Faraday cup, spherical Langmuir probe, and gridded energy analyzer have been developed for analyzing various ...

Design of an Electrodynamic Levitation System with COMSOL Multiphysics® Software - new

H. P. Ferreira[1], A. Endalecio[1], E. Rodriguez[1], R. M. Stephan[1]
[1]Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil

Levitation has found important applications in several areas of engineering, from microgravity to transportation systems. Electrodynamic levitation consists of the interaction of a varying in time magnetic field – provided by an alternating voltage supplying a coil or a moving permanent magnet. The main applications of this technique are MagLev trains and magnetic bearings. The electrodynamic ...

Influence of Voltage Type and Polarity on Electric Field Distribution Along a Polymeric Insulator

Arshad [1], Dr. A. Nekahi [1], S. McMeekin [1], M. Farzaneh [2]
[1] School of Engineering and Built Environment, Glasgow Caledonian University, United Kingdom
[2] Canada Research Chair on Atmospheric Icing Engineering of Power Networks (INGIVRE), Université du Québec à Chicoutimi, QC, Canada

Electric field distribution along an insulator surface is of prime importance for the long term performance of insulators. In this paper electric field and potential distribution along a standard 33 kV polymeric insulator were investigated under different pollution conditions. Effect of voltage type and polarity on the electric field and potential distribution under contaminated conditions were ...

Understanding Ferrofluid Spin-Up Flows in Rotating Uniform Magnetic Fields

S. Khushrushahi, and M. Zahn
Massachusetts Institute of Technology, Cambridge, MA, USA

A fully filled sphere of ferrofluid has constant demagnetizing factors in all three Cartesian directions such that when subjected to a uniform external rotating magnetic field the internal field is also uniform, and ultrasound measurements give no observable flow. Non-uniform magnetic fields or a non-uniform distribution of susceptibility are necessary conditions for ferrofluid spin-up flows in ...

Sensitivity Optimization of Microfluidic Capacitance Sensors

S. Satti[1], M. Baghini[1]
[1]Indian Institute of Technology Bombay, Mumbai, Maharashtra, India

As a part of a lab-on-chip-device, more often it is required to measure dielectric constant of the fluid. For this purpose it is necessary to develop a sensor whose size is compatible with microfluidic channel. The work, presented in this paper, studies effect of the parameters influencing sensitivity of such a sensor and ultimately optimizes these dimensions to maximize the sensitivity. We ...

Effect of Electrical Field Distortion on Particle-Particle Interaction Under DEP

G. Zhang[1], Y. Zhao[1], J. Hodge[1], J. Brcka[2], J. Faguet[2], E. Lee[2]
[1]Clemson University, Clemson, SC, USA
[2]TEL U.S. Holdings, Inc., U.S. Technology Development Center, Austin, TX, USA

In using DEP for particle manipulation, researchers often use a formula to calculate the DEP forces in which the forces are proportional to the particle radius to the third power. This formula assumes that the electrical field, E, will not be affected by the presence of a particle, no matter what the actual size and the dielectric property of the particle are. This work confirms that the ...