Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Design of Dielectrophoretic Cell Traps in Microfluidics Devices Using COMSOL Multiphysics® Software

L. Velmanickam [1], K. Nawarathna [1],
[1] Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND, USA

The isolation of target cells from biological samples such as serum, urine or blood in high-throughput manner without contamination with other cells is the starting point of developing effective therapy for many diseases. Currently available methods for cell isolation/separation require extra labeling. Furthermore, separating target cells using current methods do not produce pure target cell ...

Experimental Investigations and Numerical Simulation of Electrothermally Actuated Micro-gripper

B. K. S. Kishor[1], T. Ramesh [1],
[1] NIT Trichy, Tiruchirappalli Tamil Nadu, India.

At the micron-level, thermal actuation exerts larger forces compared to the widely-used electrostatic actuation. To obtain large displacements at low voltage the principle of Electro Thermal actuation is used. It works on the principle of selective non-uniform Joule heating which results in thermal expansion due to constraints. The Microgripper presented here is studied and analyzed by carrying ...

Design and Optimization of Power Cable Accessories Using COMSOL Multiphysics®

A. Lewarkar [1], D. Bergsma [1], S. Madhar [2],
[1] E&D Department, Lovink Enertech B.V., Terborg, Netherlands
[2] Electrical Engineering Department, Delft University of Technology, Delft, Netherlands

Power cable manufacturing is limited by the maximum length of cable that can be produced and stored on cable drums. This creates a need or rather an opportunity for a cable accessory, namely 'Cable Joints'. Joints are an impeccable component in the power cable network that necessitate extreme care in their design and installation in order to facilitate a smooth connection between two cable ends ...

Dynamic Simulation of a Coaxial Magnetic Gear Using Global ODE's and the Rotating Machinery, Magnetic Interface

M. Ostroushko [1], W. Zhang [1], W. M. Rucker [1],
[1] Institute of Theory of Electrical Engineering, University of Stuttgart, Stuttgart, Germany

The coaxial magnetic gear is a good alternative to classic mechanical gears. The magnetic gear has high mechanical durability, overload protection and lower noise, than a mechanical gear [1,2]. A static model of a magnetic gear [3,4] is used for simulation of the magnetic fields and mechanical forces in the steady state. For the dynamic characteristic of the magnetic gear, i.e. a run-up, slowing ...

Topographic Effects on Radio Magnetotelluric Simulations on Levees: Numerical Modeling for Future Comparison With Fields Results

R. Duval[1], C. Fauchard[1], R. Antoine[1]
[1]ERA23-IFSTTAR, Laboratoire des Ponts et Chaussées de Rouen, CETE-Normandie Centre, France

We study the topography influence of levees on the electric resistivity signal obtained with the Radio-Magnetotelluric method. Field measurements have been modeled with COMSOL, using the AC/DC and RF Modules. A levee situated in Orléans along the Loire river (France) has been considered in order to design a model tacking account of the skin depth and the incident wavelength, keeping a constant ...

Simulation of GMR in Granular C/Co Nanoparticles in Agarose - new

P. Hainke[1], D. Kappe[1], A. Hütten[1]
[1]Universität Bielefeld, Bielefeld, Germany

As the importance of nanoparticles is growing more and more, controlling and understanding the properties of nanoparticles became a focus of research. In this field Meyer at al. [1] are researching the GMR effect in granular gels to develop magnetoresistive sensors. The GMR in granular gels is simulated to investigate the physical processes in those systems. As soon as the models coincide with ...

Analysis of Forces acting on Superparamagnetic beads in fluid medium in Gradient Magnetic Fields

U. Veeramachaneni[1], and R.L. Carroll[1]

[1]Department of Chemistry, West Virginia University, Morgantown, West Virginia, USA

Superparamagnetic micro beads offer some  attractive applications in biological and biomedical fields. Some of the important applications include manipulation and separation of cells, isolation of specific cells, active drug delivery, magnetic cell separation, separation of proteins, and application of mechanical forces to cells, etc. A COMSOL Multiphysics model is developed in 2D ...

Parametric Model Of An Air-Core Measuring Transformer

D. Herceg
Faculty of Technical Science, Novi Sad, Serbia

Power grid voltages and currents may be distorted due to presence of harmonics. Measurements of such voltage with harmonics may be performed using newly developed instrument with a small air-core transformer based probe as the input unit. The probe must be shielded against unknown external electromagnetic fields. At the same time, the probe must remain linear throughout the range of frequencies. ...

Current Density, Electric Field and AC Loss Simulation of Mono Block and Single Layer Polygonal HTS Cable Using COMSOL Multiphysics

G. Konar[2], R. K. Mandal[1], and N. Chakraborty[2]
[1]Electrical Engineering Department, Seacom Engineering College, Dhulagar,West Bengal, India
[2]Power Engineering Department, Jadavpur University, Kolkata, West Bengal, India

High temperature super conducting (HTS) cables are gaining attentions for their ability to transmit more power compared to their convention counterparts with essentially no resistance and electromagnetic emissions. They are also appropriate for solving the grid congestion problem in the power corridors with their reduced size and weight. But the AC loss that occurs in the HTS cables reduces the ...

Numerical Simulation of a Human Body Subjected to Electrostatic Fields for Study of the Turin Shroud Body Image

G. Fanti[1], L. Matordes[1], V. Amoruso[2], M. Bullo[1], F. Lattarulo[2], G. Pesavento[1]
[1]Dip. di Ingegneria Industriale, Università di Padova, Padova, Italy
[2]Politecnico di Bari, Bari, Italy

The TS (Turin Shroud) [1,2] is a fine linen fabric showing a not yet explainable [3] double body image of a scourged and crucified man stabbed on the side. Many hypotheses have been formulated without success [4] and perhaps the most reliable is one correlated to the Corona Discharge [5] that supposes the presence of an intense electric field, amplified by the presence of ionization induced by ...