Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Ampacity Simulation of a High Voltage Cable Used in Offshore Wind Farms

E. Pelster[1]
[1]Wenger Engineering, Ulm, Germany

The ampacity of a cable depends on the cross section of its conductor. When selecting a cable design for a specific application it is of interest to choose the lowest possible conductor cross section in order to reduce material costs. Therefore an exact calculation of the ampacity is necessary (it is usually limited by the thermal resistance of the insulating cable materials). Commonly the ...

Heat Transfer Modeling of Steam Methane Reforming

E. Carcadea[1], M. Varlam[1], I. Stefanescu[1]
[1]National Research Institute for Isotopic & Cryogenic Technologies, Rm.Vâlcea, Romania

Steam methane reforming is a widely studied process because of its importance for hydrogen production. A two-dimensional membrane-reactor model was developed to investigate the steam-methane reforming reactions. The use of membrane as membrane-reactor separator offer us few advantages because it help in continuously removing the hydrogen from the reaction zone, shifting the chemical equilibrium ...

Modeling Microwave Chiral Material Based On Crank Resonators Arrays Using COMSOL Multiphysics

J. Muñoz[1], G.J. Molina [1], M.M. Rojo[1]
[1]Dpto. Electromanetismo y Electrónica, Facultad de Química, Universidad de Murcia, Campus Espinardo, Murcia, Spain

Electromagnetic metamaterials present exotic and unusual properties hardly to be found in nature with many potential applications. They are usually built by distributing small resonant structures in periodical lattices. If the structure has chiral symmetry, the medium is called chiral metamaterial. Here the electrodynamics behavior of a chiral structure with a huge electromagnetic activity at ...

A Parametric Study on the Dynamic Behavior of Cable Supported Bridges Under Moving Loads Affected by Accidental Failure Mechanisms

P. Lonetti[1], A. Pascuzzo[1], R. Sarubbo[1]
[1]Department of Structural Engineering, University of Calabria, Rende, Cosenza, Italy

The dynamic behavior of cable supported bridges subjected to moving loads and affected by corrosion and accidental failure mechanism in the cable suspension system is investigated. The different types of cable supported bridges are distinctively characterized by the configuration of the cable system [1]. The suspension system comprises a parabolic main cable and vertical hanger cables connecting ...

Modeling of Ultrasonic Fatigue-Life Testing Machine

D. Dimitrov[1], V. Mihailov[1], B. Kostov[1]
[1]Technical University of Varna, Varna, Bulgaria

Usually fatigue-life tests of materials are long, time-consuming and expensive. With the development of high power piezoceramic actuators nowadays it is possible to provide at very high cycles 10e10 fatigue tests (VHCF) for reasonable times, at high frequency. The ultrasonic fatigue machine consists of piezoceramic transducer, booster, horn and specimen made of tested material. System works in ...

Multiphysics Process Simulation of Static Magnetic Fields in High Power Laser Beam Welding of Aluminum

M. Bachmann[1], V. Avilov[1], A. Gumenyuk[1], M. Rethmeier[1]
[1]BAM Federal Institute for Materials Research and Testing, Berlin, Germany

The article deals with the application of the Hartmann effect in high power laser beam welding of aluminum. The movement of liquid metal in a magnetic field causes electric currents which build a Lorentz force that decelerates the original flow. The numerical model calculates the influence of a steady magnetic field on partial penetration keyhole laser beam welding of aluminum. Three-dimensional ...

Exergy Analysis of a Water Heat Storage Tank

F. Dammel[1], J. Winterling[1], K. J. Langeheinecke[2], P. Stephan[3]
[1]Institute of Technical Thermodynamics, Technische Universität Darmstadt, Germany
[2]IAV, Gifhorn, Germany
[3]Institute of Technical Thermodynamics/Center of Smart Interfaces, Technische Universität, Darmstadt, Germany

A combined heat and power (CHP) plant generates both electricity and useful heat. A heat storage tank enables a decoupling of electricity and heat delivery. In this study a cylindrical hot water storage tank is considered. Charging, holding time and discharging are numerically simulated applying COMSOL Multiphysics 4.2. The performance of the heat storage is evaluated by an exergy analysis. ...

Keyhole Formation During Spot Laser Welding: Heat and Fluid Flow Modeling in a 2D Axisymmetric Configuration

M. Courtois[1], M. Carin[2], P. LeMasson[2], S. Gaied [1]
[1]ArcelorMittal, Global R&D, Montataire, France
[2]LIMATB Laboratory, Université de Bretagne Sud, Lorient, France

For a better understanding of phenomena associated to the appearance of defects in laser welding, a heat and fluid flow model is developed. This study is focused on the modeling of a static laser shot on a sample of steel. This 2D axialsymmetric configuration is used to study phenomena related to the creation of the keyhole. This model takes into account the three phases of the matter: the ...

Simulation and Design of an Oven for PET Blow Molding Machines

M. Mor[1], C. Seneci[1], V. Zacché[1], C. Remino[1], G. Petrogalli[1], D. Fausti[1]
[1]Polibrixia, Brescia, Italy

This paper presents the study and design of a new generation oven for PET blow-molding machines. The design faced several technical challenges such as: the temperature distribution in the critical areas, the sharp curvature radius, the high PET thermal inertia and the presence of boundary elements, which affected the overall performances. The work included an analysis of the preform material and ...

Sulfur Deactivation Effects on Catalytic Steam Reforming of Methane Produced by Biomass Gasification

P. Sadooghi[1], R. Rauch[1]
[1]Vienna University of Technology, Vienna, Austria

Sulfur, which is incorporated in the biomass structure, is released into the product gas during gasification as hydrogen sulfide. Hydrogen sulfide is known to deactivate nickel based steam reforming catalysts by chemisorption on the metal surface during steam reforming process. Desulfurization has a negative effect on the process efficiency therefore steam reforming has to be run without ...

Quick Search