Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling of Pulsed Laser Thermal Annealing for Junction Formation Optimization and Process Control

R. Negru [1], K. Huet[1], P. Ceccato[1], B. Godard[1]
[1]Excico, Gennevilliers, France

It is now a well known that the next generation devices in many fields of the semiconductor industry will be based on 3D architectures. In this framework, low thermal budget annealing technological solutions are required. For many applications, either in the field of sensors, microprocessors or high density memories, the Laser Thermal Annealing (LTA), an ultrafast and low thermal budget process, ...

Current Density Distribution and Material Removal Behavior on the Graphite/Iron-matrix Interface in Cast Iron Under Pulse Electrochemical Machining Conditions

O. Weber[1], R. Kollmannsperger[2], D. Bähre[2]
[1]Center for Mechatronics and Automatization, Saarbrücken, Germany
[2]Institute of Production Engineering, Saarland University, Saarbrücken, Germany

The Pulse Electrochemical Machining is especially suitable for the precise production of complex geometric contours with high precision and high surface quality demands in workpieces in series manufacturing. During this process, the negative structure of an electrode is copied to the workpiece without sub-surface damages. An adequate knowledge of the current density distribution and thus of the ...

Implementation of an Isotropic Elastic-Viscoplastic Model for Soft Soils Using COMSOL Multiphysics

M. Olsson[1], T. Wood[1], C. Alén[1]
[1]Division of GeoEngineering, Chalmers University of Technology, Gothenburg, Sweden

In this paper a elastic-viscoplastic (creep) model is implemented in COMSOL 4.2a and 4.3 and benchmarked against another commercial finite element software package with a very similar material model. It is also validated against commonly performed laboratory tests such as Constant Rate of Strain oedometer tests (CRS) and K0-Consolidated Undrained triaxial tests (K0CU). The implementation in ...

Fracture-Matrix Flow Partitioning and Cross Flow: Numerical Modeling of Laboratory Fractured Core Flood

R. Sanaee[1], G.F. Oluyemi[1], M. Hossain[1], B.M. Oyeneyin[1]
[1]Robert Gordon University, Aberdeen, United Kingdom

The contrast between hydro-mechanical behavior of the rock matrix and fracture network systems results in flow partitioning between fracture and matrix systems which is affected by the In-situ stress regime. Fracture flow, Darcy law and free and porous media flow physics interfaces of COMSOL were used in simulating a fractured core flooding test to achieve a better understanding of flow ...

Solar Cell Cooling and Heat Recovery in a Concentrated Photovoltaic System

M. Cozzini[1]
[1]Fondazione Bruno Kessler (FBK), Renewable Energies and Environmental Technologies (REET) Unit, Trento, Italy

Concentrated photovoltaic systems with high efficiency solar cells are being widely investigated, aiming at improving the cost-efficiency balance in the solar energy field. Different cell types are in use: e.g., high concentration triple junction cells, reaching efficiencies of the order of 35 - 40 % at 1000 suns, and medium concentration mono-crystalline silicon cells, with efficiencies of the ...

Modeling Microwave Chiral Material Based On Crank Resonators Arrays Using COMSOL Multiphysics

J. Muñoz[1], G.J. Molina [1], M.M. Rojo[1]
[1]Dpto. Electromanetismo y Electrónica, Facultad de Química, Universidad de Murcia, Campus Espinardo, Murcia, Spain

Electromagnetic metamaterials present exotic and unusual properties hardly to be found in nature with many potential applications. They are usually built by distributing small resonant structures in periodical lattices. If the structure has chiral symmetry, the medium is called chiral metamaterial. Here the electrodynamics behavior of a chiral structure with a huge electromagnetic activity at ...

Study of Thermal Behavior of Thermoset Polymer Matrix Filled with Micro and Nanoparticles

B. Reine[1], J. Di-Tomaso[2], G. Dusserre[1], P. Olivier[1]
[1]Université de Toulouse, UPS, INSA, Mines Albi, ISAE, ICA, IUT, Dept. GMP, Toulouse Cedex, France
[2]RESCOLL - Société de Recherche, Pessac Cedex, France

This paper addresses the study of thermal behavior of thermoset polymer matrix filled with microparticles. A numerical model was developed with COMSOL Multiphysics to get a random spatial distribution of fillers in a representative volume element (RVE). This model was then compared to an analytical reference model (Hamilton model) and experimental results. This comparison highlights a good ...

Ampacity Simulation of a High Voltage Cable Used in Offshore Wind Farms

E. Pelster[1]
[1]Wenger Engineering, Ulm, Germany

The ampacity of a cable depends on the cross section of its conductor. When selecting a cable design for a specific application it is of interest to choose the lowest possible conductor cross section in order to reduce material costs. Therefore an exact calculation of the ampacity is necessary (it is usually limited by the thermal resistance of the insulating cable materials). Commonly the ...

A High Power Planar Triode Oscillator Designed by Using FEM Modeling

S. Lefeuvre[1], M. Ghomi[2]
[1]EURL CREAWAVE, Labège, France
[2]CALCEM, Ste Foy d'Aigrefeuille, France

COMSOL, adding SPICE® elements into its FEM, gives the possibility of a direct modeling of oscillators: triode and load are FEM described while all the other components of the circuit are just simulated using SPICE®. The modeling is not a straight application of any module but needs the previous computation of the conductivity of the beam through the PDE interface. This paper is a bench mark ...

Keyhole Formation During Spot Laser Welding: Heat and Fluid Flow Modeling in a 2D Axisymmetric Configuration

M. Courtois[1], M. Carin[2], P. LeMasson[2], S. Gaied [1]
[1]ArcelorMittal, Global R&D, Montataire, France
[2]LIMATB Laboratory, Université de Bretagne Sud, Lorient, France

For a better understanding of phenomena associated to the appearance of defects in laser welding, a heat and fluid flow model is developed. This study is focused on the modeling of a static laser shot on a sample of steel. This 2D axialsymmetric configuration is used to study phenomena related to the creation of the keyhole. This model takes into account the three phases of the matter: the ...