Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Particle Tracing: Analysis of Airborne Infection Risks in Operating Theatres

P. Apell[1], S. Hjalmarsson[1], T. Lindberg[1], I. Wernström[1], Y. Tarakonov[1], A. Erichsen Andersson[2], M. Karlsteen[1]
[1]Department of Applied Physics, Chalmers University of Technology, Göteborg, Sweden
[2]Sahlgrenska University Hospital, Department of Anesthesia, Surgery and Intensive Care, Göteborg, Sweden

Patients undergoing surgery are sensitive to infections. The operation staff may spread 10^4 particles per person per minute, of which ten percent are presumed bacteria-carrying. We visualize the influence of the personnel on the air and particle flows for the two most common ventilation systems in Swedish hospitals using Comsol Multiphysics with particle tracing.. The Laminar Air flow ...

FEM Based Design and Simulation Tool for MRI Birdcage Coils Including Eigenfrequency Analysis

N. Gurler[1], Y. Ziya Ider[1]
[1]Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey

Designing a Radio Frequency (RF) birdcage coil used in Magnetic Resonance Imaging (MRI) at high frequencies where the wavelength is comparable with the coil dimensions is a challenging task. Before construction of the coil, not only calculating the capacitance value which is necessary for the coil to resonate at the desired frequency but also geometrically modeling the coil in a 3D simulation ...

Simulation of Current Density for Electroplating on Silicon Using a Hull Cell

F. Lima[1], U. Mescheder[1], H. Reinecke[3]
[1]Hochschule Furtwangen University, Furtwangen, Baden-Wuerttemberg, Germany
[3]Institut für Mikrosystemtechnik, Freiburg im Breisgau, Baden-Wuerttemberg, Germany

Electrodeposition has a major advantage over other methods of thin film deposition. It allows deposition at atmospheric pressure and room temperature, requiring inexpensive equipment. However, there are several parameters which can influence an electroplated metal layer quality. The current density distribution is taken into consideration. The Hull cell is an electrodeposition tank with a ...

Ammonia Removal From Water by a Liquid-Liquid Membrane Contactor Under a Closed Loop Regime

E. Licon[1], S. Casas[1], A. Alcaraz[1], J.L. Cortina[1], C. Valderrama[1]
[1]Universitat Politécnica de Catalunya, Barcelona, Spain

Ammonia separation from water by membrane contactor was simulated on transient state and compared with experimental data. Aqueous low concentrated solution of ammonium with high pH has been pumped inside the hydrophobic hollow fibers, acid solution in the outside part. The system is in closed loop configuration. In order to simulate the separation process, equations were developed considering ...

Simulation of Piezoelectric Transformers with COMSOL

T. Andersen[1], M. A. E. Andersen[1], O. C. Thomsen[1]
[1]DTU Elektro, Technical University of Denmark, Kgs. Lyngby, Denmark

In this work COMSOL is utilized to obtain the Mason lumped parameter model for a piezoelectric transformer (PT) design. The Mason lumped parameters are relevant in the design process of power converters. The magnitude of the impedance is simulated for a specific interleaved multilayer thickness mode PT. The PT design has been prototyped and the measurements results are compared with simulations. ...

Comparison Between Turbulent and Laminar Bubbly-Flow for Modeling H2/H2O Separation

E. Amores Vera[1], J. Rodríguez Ruiz[1]
[1]Centro Nacional del Hidrógeno, Puertollano, Spain

One of the most critical aspects on water electrolysis is gas-liquid separation, especially in systems with forced convection. The main problem of this kind of circulation is that a gas fraction could return to the electrolysis circuit. A suitable design of separator devices could be a solution in order to avoid a gas return to the electrolysis circuit. In this sense, the use of deflectors might ...

Computational Modeling and Simulation of the Human Duodenum

B. Hari[1], S. Bakalis[1], P. Fryer[1]
[1]The University of Birmingham, School of Chemical Engineering, Edgbaston, Birmingham, United Kingdom

Worldwide attention in the computational modeling and simulation of the human intestine is increasing in order to help understand its complex behavior and improve health. Computational fluid dynamics is an essential tool to understand the mechanics and transport phenomena of the human intestine, thereby advancing the diagnosis and treatment of gastrointestinal related diseases. The aim of this ...

Thermal Simulations of a LED Light Using COMSOL Multiphysics

M. Maaspuro[1]
[1]University of Turku, Turku, FInland

An experimental LED light composed of a multi-chip LED-module, a LED driver and an efficient heat sink, was investigated using COMSOL Multiphysics software and the Heat Transfer Module. In an LED light heat is mainly generated in the LEDs but some amount of heat is generated also in the LED driver. The main target of the simulations was to resolve the junction temperatures of LEDs, the most ...

COMSOL Analysis of Acoustic Streaming and Microparticle Acoustophoresis

H. Bruus[1], P.B. Muller[1], R. Barnkob[1], M.J.H. Jensen[2]
[1]Technical University of Denmark, Kongens Lyngby, Denmark
[2]COMSOL, Kongens Lyngby, Denmark

We have simulated the ultrasound-induced acoustophoretic motion of microparticles suspended in an aqueous solution. The full first-order thermoviscous acoustics equations have been implented on a rectangular microfluidic 2D domain excited with an ultrasound field tuned to resonance near 2 MHz. The micrometer-thin but crucial viscous boundary layers at the rigid walls have been fully resolved. ...

Modeling of Pulsed Laser Thermal Annealing for Junction Formation Optimization and Process Control

R. Negru [1], K. Huet[1], P. Ceccato[1], B. Godard[1]
[1]Excico, Gennevilliers, France

It is now a well known that the next generation devices in many fields of the semiconductor industry will be based on 3D architectures. In this framework, low thermal budget annealing technological solutions are required. For many applications, either in the field of sensors, microprocessors or high density memories, the Laser Thermal Annealing (LTA), an ultrafast and low thermal budget process, ...

1 - 10 of 228 First | < Previous | Next > | Last