Resources
White Papers and
Application Notes
- Thermal Management of Buildings
- Hardware and Simulation Software Advancements
- Modeling the Lithium-Ion Battery
Conference Collections
- User Presentation 2017
- User Presentation 2016
- User Presentation 2015
- User Presentation 2014
- User Presentation 2013
Additional Reading
Gate Control of Single-Electron Spins in GaAs/AlGaAs Semiconductor Quantum Dot
S. Prabhakar and J. RaynoldsCollege of NanoScale Science and Engineering, University at Albany, Albany, NY, USA
Non-charge-based logic is the notion that an electron can be trapped and its spin manipulated through application of gate voltages. Numerical simulations of Spin Single Electron Transistors (SSET) at University at Albany, aimed at practical development of post-CMOS concepts and devices is presented.
We use COMSOL based multiphysics finite element simulation strategy to solve the Schrödinger-Poisson equations self-consistently to obtain realistic confining and gating potentials for realistic device geometries. We will discuss the calculation of the gate-tuned "g-factor" for electrons and holes in electro-statically defined quantum dots including the Rashba and Dresselhaus spin-orbit interactions numerically from realistic wave functions for asymmetric and symmetric confining potentials.
