A Shift-and-Weight (SAW) Method for Fast Interpolation of Probe Charge Electrostatic Potentials

C. Roman¹, N. Spiegelhalter¹

1. D-MAVT, Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland

INTRODUCTION: For electrostatics problems where charge distributions vary or are unknown (e.g. semiconductors, electro-mechanics), using a Green's functions (elementary solution) method, may be more efficient. The potential is a convolution of the Green's function with the charge distribution:

Figure 1. An elementary solution

QUESTION: Given its 6D nature is there an efficient way to compute and store $G(\mathbf{r}, \mathbf{r'})$?

COMPUTATIONAL METHODS:

The proposed "Shift-and-Weight method" (SAW):

- 1. use COMSOL Electrostatics interface (es) to compute and store $G(\mathbf{r}, \mathbf{r}_j)$ for a set of probe charge positions $\mathbf{r}_i \in \{\mathbf{r}_1, \mathbf{r}_2, ...\}$
- 2. to approximate elementary solution at a test charge position not in the set $\mathbf{r}' \notin \{\mathbf{r}_1, \mathbf{r}_2, \ldots\}$
 - 2.1. select 1-4 probe charge positions in the vicinity of the test position
 - 2.2. shift their elementary solutions to the test position $\mathbf{r'}$, via a displacement map $\mathbf{u}(\mathbf{r}, \mathbf{r'}-\mathbf{r}_i)$
 - 2.3. weight (linearly combine) the "shifted" elementary solutions based on distance to the test position $\gamma(\mathbf{r}', \mathbf{r}_i)$

$$\tilde{G}(\mathbf{u}(\mathbf{r}, \mathbf{r}' - \mathbf{r}_{j}), \mathbf{r}') = \sum_{i} \gamma(\mathbf{r}', \mathbf{r}_{j}) G(\mathbf{r}, \mathbf{r}_{j})$$

The weighting functions $\gamma(\mathbf{r}', \mathbf{r}_j)$ are monotonically decreasing, partition of unity functions $\gamma(\mathbf{r}_i, \mathbf{r}_j) = \delta_{ij}$

The displacement (source) map $\mathbf{u}(\mathbf{r}, \mathbf{r}'-\mathbf{r}_j)$ is implemented as a General Extrusion, using a non-linear ramp function to get a displacement field from $G(\mathbf{r}, \mathbf{r}_j)$ itself

$$\mathbf{u}(\mathbf{r}, \mathbf{r}' - \mathbf{r}_{i}) = \mathbf{r} + f(G(\mathbf{r}, \mathbf{r}_{i})) \cdot (\mathbf{r}' - \mathbf{r}_{i})$$

RESULTS: For a simple 2D geometry with two electrodes:

Figure 2. Spatial dependence of the SAW error within the domain with 1 probe charge (left) and 4 probe charges (right)

probe charges	max(error) [mV]	
1	44.63	
2	37.07	
3	19.11	
4	9.9	

 Table 1. Max absolute error variation with number of probe charges

dimension	T _{COMSOL} [s]	T _{SAW} [s]	speedup
2D	4.01	0.1	40×
3D	120.0	1 26	102 ×

Table 2. Computational time for COMSOL simulation vs. SAW method

CONCLUSIONS:

- In the center it is possible to achieve max absolute errors <10mV (1% relative) for shifts of up to 64nm (3% inter-electrode distance).
- Average speedups of $40 \times (2D)$ and $102 \times (3D)$ were demonstrated