Presented at the 2011 COMSOL Conference

A Modeling Study to Determine the Effectiveness of an Energy Recovery Ventilator (ERV)

R. Pastor¹, E. Gutierrez-Miravete² and N. Lemcoff² ¹General Dynamics Electric Boat ²Rensselaer Polytechnic Institute Hartford

Background

Energy Recovery Ventilator

- A heat exchanger used in HVAC applications that allows heat and mass transfer between two airstreams separated by a membrane
- Utilizes conditioned air to:
 - Heat or cool outside air
 - Humidify or dehumidify outside air

Objective

• To numerically evaluate the effectiveness of an energy recovery ventilator during the summer and winter seasons with both countercurrent and concurrent flow

Governing Equations - Multiphysics

Fluid Equation

• Momentum transport $\rho \frac{\partial u}{\partial t} - \nabla \left[\eta \left(\nabla u + \left(\nabla u \right)^T \right) \right] + \rho \left(u \cdot \nabla \right) u + \nabla p = F$ • Continuity $\nabla \cdot u = 0$

Mass Transfer

$$\delta_{ts} \frac{\partial c}{\partial t} + \nabla \cdot \left(-D\nabla c + cu \right) = R$$

Heat Transfer

$$\delta_{ts}\rho c_p \frac{\partial T}{\partial t} + \nabla \cdot \left(-k\nabla T\right) = Q - \rho c_p u \cdot \nabla T$$

Sensible and Latent Effectiveness

$$\varepsilon_{s} = \frac{\rho_{s}c_{ps}u_{s}d_{s}(T_{si} - T_{so}) + \rho_{e}c_{pe}u_{e}d_{e}(T_{eo} - T_{ei})}{2(\rho c_{p}ud)_{\min}(T_{si} - T_{ei})}$$
$$\varepsilon_{L} = \frac{\rho_{s}u_{s}d_{s}(c_{si} - c_{so}) + \rho_{e}u_{e}d_{e}(c_{eo} - c_{ei})}{2(\rho ud)_{\min}(c_{si} - c_{ei})}$$

Finite Element Model Inputs

 Outside Air Properties (Summer and Winter Seasons)

	Summer	Winter
Outside Dry Bulb Temperature (C)	35.000	1.700
Outside Dry Bulb Temperature (K)	308.150	274.850
Outside Wet Bulb Temperature (C)	26.000	0.600
Outside Web Bulb Temperature (K)	299.150	273.750
Relative Humidity (%)	49.340	82.020
Pressure (mbar)	56.280	6.910
Density (kg/m^3)	1.145	1.284
Dynamic Viscosity (kg/m*s)	1.895E-05	1.738E-05
Thermal Conductivity (W/m*K)	0.026	0.024
Diffusivity (m^2/s)	2.680E-05	2.120E-05
Concentration Air (mol/m ³)	39.550	44.342
Concentration Water (mol/m^3)	1.085	0.248

 Building Air Properties (Summer and Winter Seasons)

	Summer	Winter
Building Dry Bulb Temperature (C)	24.000	21.000
Building Dry Bulb Temperature (K)	297.150	294.150
Building Wet Bulb Temperature (C)	17.000	14.000
Building Wet Bulb Temperature (K)	290.150	287.150
Relative Humidity (%)	49.590	45.866
Pressure (mbar)	29.850	24.877
Density (kg/m^3)	1.188	1.200
Dynamic Viscosity (kg/m*s)	1.844E-05	1.830E-05
Thermal Conductivity (W/m*K)	0.025	0.025
Diffusivity (m^2/s)	2.484E-05	2.436E-05
Concentration Air (mol/m^3)	41.014	41.432
Concentration Water (mol/m^3)	0.600	0.467

Finite Element Model (2D)

• ERV Basic Dimensions

• Mesh

Length (mm)	250
Half Channel Height (mm)	2
Membrane Thickness (mm)	0.1

d	10
δ	10
L	200

Membrane Properties

	Summer	Winter
Density (kg/m^3)	1.160	1.240
Thermal Conductivity (W/m*K)	0.130	0.130
Diffusivity (m^2/s) of H2O	8.000E-06	8.000E-06

Results - ERV Effectiveness

• Sensible and Latent Effectiveness with Equal Velocities in both Channels (Summer Conditions)

Results – ERV Temperature Profiles

Across the channel at several axial locations (Summer Conditions)

Results – Velocity & Concentration Fields

Midsection of the channel (Summer Conditions)

Results – ERV Effectiveness

• Sensible and Latent Effectiveness with Equal Velocities in both Channels (Winter Conditions)

Results – Temperature Profiles

 Across the channel at the axial midpoint (x = 0.125 m) and at a speed of 1.25 m/s (Winter Conditions)

Conclusions

- Countercurrent flow ERV is more effective than concurrent flow
- The performance of a countercurrent flow ERV has the potential to improve as the size increases.
- The effectiveness of the ERV increases as the flow through the channel decreases, and an optimum size/velocity can be determined
- 3D modeling of the crossflow ERV must be explored