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What is Optimal PDE Control? A Well Known Example

Control of the Navier-Stokes Equations, backward facing step.

Uncontrolled: A large
vortex is located behind
the step.

Controlled: The velocity on
the vertical boundary (red
colored) is used as control.
The vortex is reduced.

Figures taken from:T. Slawig. PDE-constrained Control using FEMLAB - Control of the
Navier-Stokes Equations.
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Two General Appoches: First Discretize vs First Optimize

First discretize than optimize First optimize than discretize
Discretize the whole problem by i.e.
finite elements and use large scale
optimizer to solve the problem.

Derive optimality conditions for the
infinite dimensional problem. Here, this
will be a system of coupled PDEs and
algebraic equations in function spaces.

pro and contra
- Discrete differential Operators fix
the structure of the PDE (e.g. step
sizes in space and time).

+ The structure of the problem as PDE
system is conserved.

+ Optimality conditions are already
known.

- Optimality conditions must be
derived.

- Leads to huge discrete systems. + The effort depends on the used
algorithms to solve the PDEs

+ One can use standard LP/NLP
solvers.

+ Needs only an adequate PDE solver
(like e.g. COMSOL Multiphysics).
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Problem Definition

Let be Ω ⊂ RN a spatial domain with boundary Σ, (t0, t1) a time interval,

min JQ(y, u) := 1
2

t1ˆ

t0

ˆ

Ω

(y − yd)2 + κ(u− ud)2 dx dt

subject to

d
dty −∇ · (A∇y) + a0y = u in Q := Ω× (t0, t1),

~n · (A∇y) + αy = g on Σ,
y = y0 in Ω0 := Ω× {0}

(1)

and the control constraints (optional)

u ≤ u ≤ u in Q

for given functions u, u, yd, and ud. A and a0 ∈ L∞(Ω). In the following we
refer this setting by (P). The function u is the control and y is the state.
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Existence and Uniqueness

By a simple transformation, one can bring (1) into a homogeneous form, i.e.
g = 0, y0 = 0, etc. but with an additional source term f .

Theorem
Assume that Ω is a bounded domain with sufficiently smooth boundary Γ. If the data y0 , g
and the control u are sufficiently smooth, then the weak solution y of the initial value problem
(2.1) belongs to

H2,1(Q) = L2(t0, t1;H1(Ω)) ∩H1(t0, t1;L2(Ω)).
The weak formulation can be written asˆ

Ω

d

dt
yw dxdt+

ˆ
Ω

(A∇y) · ∇w dxdt+ a0

ˆ
Ω
yw dxdt =

ˆ
Ω

(u+ f)w dxdt ∀w ∈ H1,0(Q),

y(x, t0) = 0 in Ω.

Note:
That is a surprisingly regular function space.
As we will see later, the control u will be sufficiently smooth in our case.
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Optimality Conditions: The real valued case

Assume that f(x) is a strongly convex differentiable function on Xad. We
consider the problem min f(x) on Xad ⊆ X.

x∗ x

f(x∗)

x

f(x∗)

x∗ x

f(x∗)

Xad = X
Xad ⊂ X

x∗

f(x)
f(x)

f(x)

Optimality condition: d
dxf(x∗)(x− x∗) ≥ 0 for all x ∈ Xad where Xad is

the admissible (subset) of the control space X.
If Xad = X (i.e. the problem is unconstrained) we have d

dxf(x∗) = 0 is
already sufficient for optimality.
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Optimality Conditions: PDE Case

Theorem
A control u∗ is the optimal solution of (P) if and only if, together with the associated optimal
state y∗ and the adjoint state p, it solves the system

d
dt
y∗ −∇ ·A∇y∗ + c0y∗ = u∗ + f

− d
dt
p−∇ ·A∇p+ c0p = y∗

}
in Q

~n · (A∇y∗) = 0
~n · (A∇p) = 0

}
on Σ

y∗(t0) = 0 in Ω
p(t1) = 0 in Ω

and
u∗ ∈ Uad := {u ∈ L2(Q) : u ≤ u ≤ ū a.e. in Q}, (2)

(κu∗ + p, u− u∗) ≥ 0 for all u ∈ Uad(Q). (3)
As in the real valued problem, the last two conditions can be replaced by κu∗ + p = 0 if
Uad = L2(Q).

Implementing the PDE part of the problem in COMSOL Multiphysics is strait
forward, but how we can deal with the inequality condition?

October 26th 2011 Thomas Slawig and Uwe Prüfert
Mathematics-based Optimization TU Bergakademie Freiberg 6



Inequality Condition in Terms of Projection

One can show that (2)–(3) is equivalent to u∗ = min{u,max(u,− 1
κp)}.

For functions a, b, z ∈ L∞(Q) we define the point wise projection

Π[a,b]{z} := π[a(x,t),b(x,t)]{z(x, t)} ∀(x, t) ∈ Q,

where π[a,b]{z} := min{b,max(a, z)}, a, b, z ∈ R.
Using

max(a, b) = 1
2(a+ b+ sign(a− b)(a− b))

min(a, b) = 1
2(a+ b− sign(a− b)(a− b)),

by using a smooth implementation of the signum function by – e.g.
COMSOL’s flsmsign -- we obtain a smooth projection formula.
Now we can replace (2)–(3) by a smooth projection u∗ = P̃[u,u]

{
− 1
κp
}
.
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The Optimality System to Solve by COMSOL

PDE System
Consequently, we obtain a smooth system of PDEs we can easily solve by
COMSOL Multiphysics

d
dt
y∗ −∇ ·A∇y∗ + c0y∗ = P̃[u,u]

{
− 1
κ
p
}

+ f

− d
dt
p−∇ ·A∇p+ c0p = y∗

}
in Q

~n · (A∇y∗) = 0
~n · (A∇p) = 0

}
on Σ

y∗(t0) = 0 in Ω
p(t1) = 0 in Ω.

Only two unknowns, control u implicitly given.
Discretize the time-space domain by a triangular mesh.
Unfortunately, this restricts this approach to a space dimension up to two
(for time dependent problems).
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Numerical Example

Solve Problem (P) with A = I and −1 ≤ u ≤ 1.5 in Q = (0, π)× (0, π),
yd = sin(x) sin(t) and ud ≡ 0. κ = 10−3.
Use weak form to implement the PDE system, mesh Q by a space-time
grid via

fem.geom = rect2(0,pi,0,pi);

The PDE reads as
fem.equ.ga = { { {’-yx’ ’0’}

{’-px’ ’0’} } };
fem.equ.f = { {’-ytime+min(u_b,max(u_a,1/kappa*p))’ ...

’ ptime+y-y_d’} };

Replace max by a smooth projection using flsmsign with explicitly given
regularization parameter ε.

Note: This example only illustrates the approach, for more realistic problems
see e.g. Ira Neitzel, Uwe Prüfert, and Thomas Slawig. Solving Time-Dependent
Optimal Control Problems in COMSOL Multiphysics.
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Results I

Problem solved by COMSOL Multiphysics. We run the program for various
grids, both uniformly and adaptively refined. The optimal control is boxed
between u = −1 and u = 1.5.

Left: Computed optimal state y
Right: computed optimal control u = min(1.5,max(−1, 1000 · p))
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Results II

Values of 1
J(y,u)

|J(y, u)− J(y, u)| over number of grid points. Black uniformly, blue

adaptively refined mesh. J(y, u) is the solution on the finest mesh.

Values of ‖y
ε−y‖
‖y‖ over the regularization parameter for flsmsign. y is a reference solution

computed by COMSOLs choice of smoothing parameter.
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Conclusion and Remarks

If optimality conditions in terms of PDE are available, COMSOL can be
used to solve optimal control problems with control constraints.
We have to re-write the Optimal Control Problem to fit it in the COMSOL
framework.
The handling of the Variational Inequality (3) by a smoothed projection
within COMSOL can be justified.
The approach is not restricted to our problem class, c.f.

Navier-Stokes Equations: T. Slawig. PDE-constrained Control using
FEMLAB - Control of the Navier-Stokes Equations. Numerical Algorithms,
42 (2), pp. 107–126, 2006
Burger’s equation: F. Yilmaz and B. Karasözen. Solving Distributed
Optimal Control Problems for the Unsteady Burgers Equation in COMSOL
Multiphysics. Journal of Computational and Applied Mathematics, 235,
(16) pp. 4839–4850, 2011
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