Modeling an Optical "Black Hole" with True Gaussian Beam Illumination

Xingjie Ni¹, Ludmila Prokopeva², Alexander Kildishev¹, and Evgenii Narimanov¹

¹ Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907

² Institute of Computational Technologies, Russian Academy of Sciences, Novosibirsk, Russia

Purdue

Nanophotonics and Metamaterial Group

PURDUE

Nanophotonics and Metamaterial Group

- Q. Song, et al, Opt.
 Lett. 35(15), 2624-2626 (2010)
- Y. Sivan, et al, *Opt. Express* **17**(26), 24060-24074 (2009)
- S. Xiao, et al, Opt.
 Lett. 34(22), 3478-80 (2009)
- J. Borneman, et al, *Opt. Express*, **17**(14), 11607-17 (2009)
- Z. Liu, et al, *Metamaterials* 2, 45-51 (2008)

nature mathematics photonics Invisibility cloaks for the visible

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, *Nature Photonics* **1**, 224-27 (2007)

nature

pump probe probe active negative index optical metamaterial

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, *Nature* **466**, 735-738 (2010)

A Black Hole

October 8, 2010 http://web.ics.purdue.edu/~xni/home

Optical "Black Hole"

 broadband omnidirectional light absorber

College

^{of} Engineering

Purdue

- absorbs surrounding light like a real black hole
- already made experimentally in microwave region

E. E. Narimanov and A. V. Kildishev, Appl. Phys. Lett. 95, 041106 (2009)

PURDUE

Modeling the Materials

$$\epsilon(r) = \begin{cases} \epsilon_s, & r > R\\ \epsilon_s \left(\frac{R}{r}\right)^p, & R_c < r \le R\\ \epsilon_c + i\gamma, & r \le R_c \end{cases}$$

$$\epsilon_c = \epsilon_s \left(\frac{R}{R_c}\right)^p$$

A. V. Kildishev, L. J. Prokopeva, et al, Opt. Express 18, 16646-16662, (2010)

PURDUE

Modeling the Materials

$$\epsilon(r) = \begin{cases} \epsilon_s, & r > R \\ \epsilon_s \left(\frac{R}{r}\right)^p, & R_c < r \le R \\ \epsilon_c + i\gamma, & r \le R_c \end{cases}$$

$$\epsilon_c = \epsilon_s \left(\frac{R}{R_c}\right)^p$$

A. V. Kildishev, L. J. Prokopeva, et al, *Opt. Express* 18, 16646-16662, (2010)

the classical paraxial approximation

PURDUE

College

^{of}Engineering

However ...

scattered field

total field

However ...

• Helmholtz wave equation

College of **Engineering**

PURDUE

$$\begin{cases} \nabla^2 f + k^2 f = 0\\ f(0, y) = \exp\left[-(y/w)^2\right] \end{cases}$$

$$f(x,y) = \int_{-1}^{1} a_q \exp\left[\imath k \left(qy + \sqrt{1 - q^2} x\right)\right] dq + \int_{|q| > 1} a_q \exp\left[\imath k qy - k \sqrt{q^2 - 1} \left|x\right|\right] dq$$

$$a_q = \frac{1}{2\sqrt{\pi}} kw \exp\left[-\frac{1}{4} (kwq)^2\right]$$

A. V. Kildishev, L. J. Prokopeva, et al, Opt. Express 18, 16646-16662, (2010)

• Helmholtz wave equation

College of **Engineering**

PURDUE

$$\begin{cases} \nabla^2 f + k^2 f = 0\\ f(0, y) = \exp\left[-(y/w)^2\right] \end{cases}$$

$$f(x,y) = \int_{-1}^{1} a_q \exp\left[\imath k \left(qy + \sqrt{1 - q^2} x\right)\right] dq + \int_{|q| > 1} a_q \exp\left[\imath k qy - k \sqrt{q^2 - 1} |x|\right] dq$$
$$a_q = \frac{1}{2\sqrt{\pi}} k w \exp\left[-\frac{1}{4} \left(kwq\right)^2\right]$$

A. V. Kildishev, L. J. Prokopeva, et al, Opt. Express 18, 16646-16662, (2010)

http://web.ics.purdue.edu/~xni/home

• Helmholtz wave equation

College of **Engineering**

PURDUE

$$\begin{cases} \nabla^2 f + k^2 f = 0\\ f(0, y) = \exp\left[-(y/w)^2\right] \end{cases}$$

$$f(x,y) = \int_{-1}^{1} a_q \exp\left[ik\left(qy + \sqrt{1-q^2}x\right)\right] dq + \int_{|q|>1} a_q \exp\left[ikqy - k\sqrt{q^2-1}|x|\right] dq$$
$$\sim \mathbf{10}^{-19}$$
$$a_q = \frac{1}{2\sqrt{\pi}} kw \exp\left[-\frac{1}{4} (kwq)^2\right]$$

A. V. Kildishev, L. J. Prokopeva, et al, *Opt. Express* 18, 16646-16662, (2010)

http://web.ics.purdue.edu/~xni/home

PURDUE

Improved Modeling

total field

scattered field

PURDUE

Improved Modeling

PURDUE

Model the Optical "Black Hole" in COMSOL

PURDUE

Optical "Black Hole" with Gaussian Beam

Simulation results of an ideal optical black hole with outer radius $R = 20 \mu m$, and inner radius $R_c = 8.367 \mu m$. The Gaussian beam with free-space wavelength $\lambda = 1.5 \mu m$ and minimum waist width $w = 2\lambda$ is focused at $x_0 = 0$, and (a) $y_0 = 1.5R$; (b) $y_0 = R$; (c) $y_0 = 0.75R$, and (d) $y_0 = 0$.

PURDUE

Optical "Black Hole" with Gaussian Beam

Simulation results of an ideal optical black hole with outer radius $R = 20 \mu m$, and inner radius $R_c = 8.367 \mu m$. The Gaussian beam with free-space wavelength $\lambda = 1.5 \mu m$ and minimum waist width $w = 2\lambda$ is focused at $x_0 = 0$, and (a) $y_0 = 1.5R$; (b) $y_0 = R$; (c) $y_0 = 0.75R$, and (d) $y_0 = 0$.

http://web.ics.purdue.edu/~xni/home

PURDUE

Another Application – Negative Index Metamaterials

- modeled an ideal optical "black hole" device
- used a new method to precisely model the Gaussian beam illumination
- the simulation results of the optical "black hole" device shows expected performance