Modeling an Oscillating Hydrofoil for Hydrokinetic Power Generation

A Hydro-foil energy converter

Rui Han

Student Research Assistant International Arctic Research Center Dept. of Electrical & Computer Engineering University of Alaska Fairbanks

Contents

- Mechanism of the Controlled Hydrofoil
- Prototype
- Mathematical Model
- Foil motion
- 2D static model and results
- Challenges in 2D transient model
- Pros and cons for 3D model

Controlled Hydrofoil

• How it works?

ALASKA

Hydrofoil Prototype

Mathematical Model

 Differential Equations for flowing water Navier-Stokes Equation:

$$\rho \frac{D\mathbf{V}}{Dt} = -\nabla p\mathbf{I} + \nabla \mu \left[\nabla \mathbf{V} + (\nabla \mathbf{V})^T \right] + \rho \mathbf{g} \quad \text{In } \Omega \text{ for } t \in [0,T]$$

- ρ –fluid density
- *p* –pressure
- μ -fluid viscosity
- V —fluid velocity
- g —gravity of Earth

Mathematical Model

Analysis of the foil motion

- Harmonic transverse motion
- Harmonic angular motion
- With same period **T**

Quantification of forces

$$L = \frac{1}{2}\rho \overline{V}SC_{L} \qquad D = \frac{1}{2}\rho \overline{V}SC_{D}$$

$$T = L(cosy) + D(siny)$$

Foil Model in COMSOL

• 2D static Model

- Goal
 - Analyze the total static force acting on the foil
 - How different velocities affect the fluid force on the foil
 - Whether it generates enough force to drive PMG
- Application mode
 - Incompressible NS application mode,
- Boundary conditions
 - No Slip wall, inlet velocity, outlet
- Solver
 - Parametric solver

2D Static Modeling Results

- Velocity distribution of the flow pass the foil
- Lift force, drag force, and the combination of the

Results Analysis

- $1 \text{ m/s} \rightarrow 36.5 \text{ N/m}^2$ $_{\text{S}=0.63\text{m}^2}$
- 3 m/s \rightarrow 412.4 N/m²
- 5 m/s \rightarrow 1166 N/m²

- 500 Watts require 14.8 N·m
- 30 Kilowatts require 3300 N·m
- Direct drive Power generator

Easier to drive

23 N

260 N

735 N

Tangential Force "Tangential Force" Picture not draw to scale

Foil Model in COMSOL (contra)

- 2D transient Model (Unfinished)
 - Goal
 - Analyze transient motion of the foil
 - Estimate the output power in one oscillating period
 - COMSOL application mode
 - Predefined Fluid Structure Interaction mode
 - Rotating machinery mode
 - Challenges
 - How to model 3 relative moving frames
 - Optimize solving time

3D Model (optional)

Better visualization of the model
Provides more data

Convergence problem
Involving more boundary condition
Structure mechanics coupling

Future Challenges

- 3 relative free motions in 2D transient model
- Couple the Structure mechanics in 3D model
- Convergence problem in 3D model
- Integrate with Simulink control system

