

Simulations of nanophotonic waveguides and devices using COMSOL Multiphysics

Zheng Zheng

School of Electronic and Information Engineering Beihang University 37 Xueyuan Road, Beijing 100191, China

School of Electronic and Information Engineering

2010年10月26日

Capture the Concept™ 灵感一触即发 2010年10月26日

Acknowledgement Yusheng Bian Lin An Xin Zhao Muddassir Iqbal Ya Liu Wei Li Tao Zhou (NJIT) Jiangtao Cheng (Penn State Univ.)

Capture the Concept™ 灵感一触即发 2010年10月26日 2010年10月28日

Simulation of dielectric waveguides and optic fibers using COMSOL

Simulation of surface plasmon polariton (SPP) waveguides and devices using COMSOL

Capture the Concept™ 灵感一触即发 2010年10月26日 2010年10月26日

Simulation of dielectric waveguides and optic fibers using COMSOL

Simulation of surface plasmon polariton (SPP) waveguides and devices using COMSOL

Motivation - Nanophotonics

Development of Integrated Circuits

Conventional photonic device

Substrate

Low-index contrast waveguide

High-contrast planar waveguide Photonic crystal fiber and waveguide

Channel waveguide

700 nm ┠──┤ Poly-Si ──_400nm SiO₂ (600nm)

ide Slot waveguide

Diffraction limit

Dielectric slot waveguides and applications

*V. R. Almeida et. al, Optics Letters 29, 1209-1211 (2004).

Dispersion analysis of dielectric slot waveguides

Group velocity dispersion (GVD)

$$D = \frac{\mathrm{d}}{\mathrm{d}\lambda} \left(\frac{1}{v_g} \right) = -\frac{2\pi}{\lambda^2} \left(2\frac{\mathrm{d}n}{\mathrm{d}\omega} + \omega \frac{\mathrm{d}^2 n}{\mathrm{d}\omega^2} \right)$$

• Sellmeier's equation for silicon and silica refractive indices

COMSOL settings

北京航空航天大學

BEKHANGCUNIVERSITY

- Perpendicular waves of RF module- mode analysis
- Scattering boundary condition

*Z. Zheng, M. Iqbal, Optics Communications 281, 5151-5155 (2008).

Dispersion analysis of dielectric slot waveguides

- Slot waveguide: In the normal dispersion regime near the 1550 nm wavelengths Channel silicon waveguide: In the abnormal dispersion regime
- GVD (slot) > GVD (channel)

北京航空航天大學

UNIVERSITY

BEIHANG

 Higher order dispersion behavior depending strongly on the geometric parameters of the slot waveguides (e.g. slot & slab width, material filled in the slot region)

*Z. Zheng, M. Iqbal, Optics Communications 281, 5151-5155 (2008).

Photonic Crystal Fibers (PCF)

A: Standard optical fiber (Total external reflection) B: Index-guiding photonic crystal fiber (Total internal reflection) C: Hollow core photonic bandgap fiber (Photonic bandgap)

Various kinds of PCF

Merits and Potential of PCFs

- Lower transmission loss than conventional fibers
- Substantially higher damage thresholds than conventional fibers
- Promising for various linear and nonlinear optical processes

*J. C. Knight, Nature 424, 847-851 (2003).

Design of ultrahigh birefringent, ultralow loss PCF

PCF structure

- A core region with a rectangular array of four air holes (to provide the birefringence)
- A conventional circular-air-hole cladding (to reduce the confinement loss).

COMSOL settings

Intensity distributions with different elliptic ratio of the air hole

x-polarization

y-polarization

- Perpendicular waves of RF module- mode analysis
- PML boundary condition

北京航空航天大學

BEKHANGCUNIVERSITY

*L. An, Z. Zheng. Journal of Lightwave Technology 27, 3175-3180 (2009)

Design of ultrahigh birefringent, ultralow loss PCF

Intensity distribution

PCF with circular air holes

x-polarization

y-polarization

PCF with elliptical air holes

x-polarization

y-polarization

- Ultrahigh single-mode birefringence (~10⁻²) Ultralow confinement losses (<0.002 dB/km) Relatively flat dispersion Ultrahigh single-mode birefringence (~10⁻²)

- Easy to fabricate

*L. An, Z. Zheng. Journal of Lightwave Technology 27, 3175-3180 (2009)

Design of single-polarization, single-mode PCF

PCF geometry

北京航空航天大學

UNIVERSITY

BEIHANG

Intensity distribution

Single-mode and singlepolarization propagation can be realized by tuning geometry of the air holes, with low confinement loss and small mode area

*L. An, Z. Zheng, Optics Communications 282, 3266-3269 (2009)

Design of single-polarization, single-mode PCF

Dispersion optimization

• Near-zero, dispersion-flattened

北京航空航天大學

UNIVERSITY

- Small mode area
- Low confinement loss(<0.25 dB/km) Ultra-wide band (0.3-1.84 μm)

COMSOL settings

- Perpendicular waves of RF module- mode analysis
- PML boundary condition

BELHANG

*L. An, Z. Zheng, Optics Communications 282, 3266-3269 (2009)

Highly nonlinear holey fiber with a high index slot core

Proposed structure

COMSOL settings

- Perpendicular waves of RF module- mode analysis
- PML boundary condition

*L. An, Z. Zheng, Journal of Optics, 115502 (2010).

Highly nonlinear holey fiber with a high index slot core

Fiber with a slot core

- Quasi-TE mode well confined in the slot region
- Single-mode propagation with ultra-small mode area (< 0.3 μm²)
- A large negative GVD and large GVD slope

北京航空航天大學

BEINGOUNTVERSITY

*L. An, Z. Zheng, Journal of Optics, 115502 (2010).

Highly nonlinear holey fiber with a high index slot core

Fiber with a slot core and a two-air-hole cladding

北京航空航天大學

BEINGOUNTVERSITY

Capture the Concept[™] 灵感一触即发 2010年10月26日 2010年10月26日

Simulation of dielectric waveguides and optic fibers using COMSOL

Simulation of surface plasmon polariton (SPP) waveguides and devices using COMSOL

Introduction-Surface Plasmons

BEKHANGCUNIVERSITY

Introduction-SPP waveguides

Surface plasmon polariton (SPP) waveguide

Insulator/Metal/Insulator (IMI)

Long-range SPP waveguide

Advantages

Low propagation loss (a few dB/cm)

Disadvantages

Weak confinement (mode size~λ)

Metal/Insulator/Metal (MIM)

metal slot waveguide

CPP waveguides

Advantages

Tight field confinement (subwavelength scale)

Disadvantages

Huge loss (propagation length ~ several μm)

Hybrid plasmonic waveguide

*R. F. Oulton, Nature Photonics, 2008. 2(8): p. 496-500.

- Subwavelength mode confinement $\lambda^2/400 \sim \lambda^2/40$
- Long-range propagation distance
 - 40 ~ 150 μm

北京航空航天大學

BEKHANGCUNIVERSITY

Design of symmetric hybrid plasmonic waveguide

- Subwavelength confinement (1~2 orders of magnitude higher than insulator/metal/insulator waveguides)
- Low loss (propagation length~ hundreds of microns)

北京航空航天大學

UNIVERSITY

BEIHANG

*Y. S. Bian, Z. Zheng, Optics Express 17, 21320-21325 (2009).

Design of symmetric hybrid plasmonic waveguide

- High-density 3D photonic integration(packing density increased by nearly 60 times over insulator/metal/insulator waveguides)
- Finite dimensions in both directions, enabling multilayer, 3-dimensional (3D) integrated circuits

COMSOL settings

- Perpendicular waves of RF module- mode analysis
- Scattering boundary condition

*Y. S. Bian, Z. Zheng, Optics Express 17, 21320-21325 (2009).

Dielectric-loaded SPP waveguides

- Relatively tight confinement of light (subwavelength scale)
- Relatively long propagation distance (tens of microns)

Low-index DLSPP waveguides

- Low-index polymer (n~1.5)
- Low loss
- Relatively large geometry size (e.g.600nm×600nm)
- Not suitable for high integration

High-index DLSPP waveguides

- High-index dielectric (n~2 & n~3.5)
- Stronger confinement
- Compact, Si fab process compatible, suitable for integration

Huge loss

Design of DLSPP waveguide with a holey ridge

Strong field enhancement in the nanohole due to the slot effect

COMSOL settings

- Perpendicular waves of RF module- mode analysis
- Scattering boundary condition

北京航空航天大學

BELHANGUNIVERSITY

*Y. S. Bian, Z. Zheng, Optics Express, To be published.

Design of dielectric-loaded waveguide with a holey ridge

Field distributions at different nanohole widths

北京航空航天大學

BEINGOUNTVERSITY

Even stronger field enhancement with a shallow and wide, low-index nanohole

*Y. S. Bian, Z. Zheng, Optics Express, to be published.

Design of dielectric-loaded waveguide with a holey ridge

- High optical power and strong optical intensity in the hanonole
- Loss reduction achieved with small sacrifice in the mode area

北京航空航天大學

BEIHANG

UNIVERSITY

Improved figure of merit (FOM) with a shallow and wide air nanohole

*Y. S. Bian, Z. Zheng, Optics Express, To be published.

Nanolasers

The first laser (1960)

Nanotechology

Dielectric nanowire lasers [1] ~ diffraction limit

[1] Nature 421, 241-245 (2003).

Plasmon nanolasers << diffraction limit

Schematic Pump Light 2 D [2] Gonding Subject States Light Plasmon Laser Light 100 nm Silver

[2] Nature 461, 629-632 (2009). [3] Nature 460, 1110-1112 (2009). School of Electronic and Information Engineering

- Directional emissions similar to the FP lasers
- High field confinement in the gain media region
- Low-threshold operation

2D plasmon nanolasers

Hybrid plasmonic waveguides

- Low loss propagation
- Subwavelength confinement

北京航空航天大學

BELHANGUNIVERSITY

- A lower index buffer (e.g. air) helps to further enhance the field enhancement in that region
- An air gap is impossible to fabricate

Design of coplanar plasmon nanolaser

λ=490nm, *t_m***=2r**, *h*:2~30nm

- Based on an edge-coupled hybrid plasmonic waveguide
- Strong field enhancement and low loss caused by the air gap
- Easy to fabricate
- Edge plasmonic mode
- Low pump threshold

*Y. S. Bian, Z. Zheng, 2010 Frontiers in Optics

Round corner effect for the plasmon laser

- A strong field enhancement occurs in the gap region
- The enhancement is further strengthened in the center of the gap
- The pump threshold shows a monotonical reduction with increased radius
- Compared to the case with sharp corners, the threshold could be lowered by 50% at appropriate corner radius

COMSOL settings

- Perpendicular waves of RF module- mode analysis
- Scattering boundary condition

***Y. S. Bian, Z. Zheng, 2010 Frontiers in Optics**

Integrated plasmonic sensors w/ nanostructure

On-chip SPR sensor based on nanohole array and microfluidic

Nature Biotech 26, 417-426 (2008)

- ✓ Colinear optical detection
- ✓ Denser integration
- ✓ Smaller footprint
- Multiplexing biosensing
- ✓ High sensitivity

Mass transport limitation

Target molecular diffusion rate <<Binding or reaction rate

 \rightarrow Target depletion zone

Plasmonic lens

Proposed plasmonic nano-slit array

Focused beam or Optical evanescent field field gradient in Optical force in Trapping and manipulating targets

Optimized nano-slit structure for trapping in micro-fluidic

*X. Zhao, Z. Zheng, 2010 Frontiers in Optics

Optical gradient force of nano-slit lens

Time average optical force

Maxwell stress tensor

北京航空航天大學

BEINGOUNTVERSITY

$$\left\langle F_{i}\right\rangle_{t} = \int_{A} \sum_{j} \left\langle T_{ij}\right\rangle_{t} n_{j} dS \left\langle T_{ij}\right\rangle_{t} = \varepsilon_{h} \varepsilon_{0} \left\langle E_{i}(r,t) E_{j}(r,t)\right\rangle_{t} + \mu_{h} \mu_{0} \left\langle H_{i}(r,t) H_{j}(r,t)\right\rangle_{t} - \frac{1}{2} \delta_{ij} \left[\varepsilon_{h} \varepsilon_{0} \sum_{i'} \left\langle E_{i'}(r,t) E_{i'}(r,t)\right\rangle_{t} + \mu_{h} \mu_{0} \sum_{i'} \left\langle H_{i'}(r,t) H_{i'}(r,t)\right\rangle_{t} \right]$$

Impact and effect of slit in micro-fluidic

- · Optical force could increase target concentration near focal point
- More target molecular diffused to the sensing surface
 Alleviate mass transport limit

Conclusions

- Design and optimization of the nanophotonic devices are critical in realizing advanced photonic integrations in the future.
- Comsol can be used for simulating various types of nanophotonic devices involving different materials and dimensions.
- Increased functionalities of the nanophotonic devices also demand simulators capable of handling complex multiphysics simulations.

Capture the Concept[™] 灵感一触即发 2010年10月26日上海 2010年10月28日北京

Thank you!

