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Abstract: The dispersion of surface acoustic
waves (SAWs) has long been studied for diverse
applications ranging from seismic waves to
microelectronic filters. In this work, we apply
COMSOL Multiphysics software for the finite
element investigation of SA'W dispersion in two
inhomogeneous materials: (a) layered structures,
and (b) periodically patterned layered structures
known as surface phononic crystals (PnCs).
Using an )

eigenfrequency analysis, we parametrically solve
for surface wave modes versus the wave number,
k(). In validation against experimental data, we
have devised a post-processing method to rank
the many computed modes according to
likelihood of experimental detection.

Keywords: SAW, FEM, dispersion, phononic
crystal

1. Introduction

Surface acoustic waves (SAWSs) were
mathematically described by Lord Rayleigh in
1885. These waves are ideally constrained to the
mechanically free interface of a solid and feature
r V2 propagation loss from a point source.

In the many years since, similar acoustic
modes have been observed and modeled to
propagate at the interfaces of arbitrary solid
structures. The study of these waves is useful in
seismology and other areas, but there is much
recent interest in finite element simulation of
high frequency electrical filters [1], and micro-
or nano-fabrication-enabled sensors [2,3]. In
some of the latest studies, techniques specially
adapted from photonics have been applied to
simulate and experimentally confirm acoustic
bandgap devices [4, 5].

In this work, we demonstrate the utility of
COMSOL  Multiphysics

to produce dispersion plots for
some interesting problems featuring layered
structures on silicon substrates. [n practice, such
layers are useful as transducing materials (silicon
is not piezoelectric), high velocity acoustic
waveguides, or sensing films. The structures are

inhomogeneous in  one or more spatial
dimensions.

2. Dispersion in Structures

We examine both layered structures with and
without photolithographic patterning. While one
case is nonuniform with depth, the other is
nonuniform in both depth and width. Both of
these inhomogeneous structures exhibit surface
wave dispersion.

The different lossless materials used in these
structures have different acoustic velocities, and
as the wavelength changes, the distribution of
energy among the materials changes. Energy is
then transferred among modes according to
wavelength, and a nonlinear dispersive
relationship then exists between f, A, and v. The
resonant frequency and energy distribution
depend upon wavelength. Loss with respect to a
cerfain mode may be apparent though the
materials are lossless.

In layered structures, the so-called “leaky”
waves (LSAWSs) couple to bulk modes, resulting
in energy loss from the surface. In patterned
layered structures, waves may encounter stop
bands or pass bands (e.g. Bragg scattering), and
it is even possible for mode coupling to occur
such that a layered structure does not radiate
bulk waves.

3. Mathematical Model

In this work, we use the finite element
method (FEM), which typically adopts a
relatively simple mathematical formulation of
the problem such that intricacies are left to the
computational  domain:  structure, material
parameters, and boundaries.

3.1 Governing Equation

The problems we solve in this work follow
closely from first-principles physics, namely
Newton’s Second Law of motion. Equaticn (1)
shows the structural mechanics formulaticn,



where wu iz the solution wector confaining
displacements u, and u, For owr analysis, the
equation 1z homogeneous, 1e. there is no
independent forcing terrn, F.
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3.2 Eigenvalue Problem

Assuming a Hme-harmonic (resonant, steady
state) solution iz one way of finding persistent
solutions having measirable lifetimmes.

Equation (1) iz Fowrier transformed and the
resulting harmonic time dependence, explivd, is
factored out, leaving —w” to replace the time
derivative. This factor represents  the
elgenvalues we seels the mode frequencies.

What remains is similar to equation (2) and
may be solwved as a linear algehra eigenvalue
problem where the canonical matixz, A, and
solution, w, wary ower the subdomamiz) and
boundaries.
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The eigenwalues, ¢ wield the mode
frequencies. In our study, we
to iteratively wary the structwre andfor
boundary conditions. In an effort to see the
important modes, we colect many mode
frequencies, typically 20 per wawvelength, We
then sort the results ina post- processing step.

3.3 Boumdary Conditions

COMIOL Multiphyeics will produce many
solutions given the very general formulation of
the problern. For instance, compare Lamb waves
and Eayleigh wawes in Figure 1. Whereas the
Lambh wawes are plate modes and hawve free upper
and loeer boundaries, the Rayleigh modes are
single-surface modes which have a displacernent
profile decaying with depth into the substrate.

We seelk Fayleigh-type solutions, so we
enforce a typical nde of thanb for the
penetration  depth:  teo wawelengths  [B]
Therefore, in every SAW sirmmlation, we resize
the structuire to be 1.8 wawelengths tall and fix
the hottom boundary to zero displacement: w=0.

Thiz iz, of course, only an approximation to the
1deal semi-mfinite case.
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Figure 1. Lamb wawe (plate mode top), Rayleizh
wave (gurface mode, bottom). The stmcture scale
corresponds to the acowstic wavelength, &, but the
deformations are not to scale.

Along  the eaxis, we apply perodic
boundary conditions. This iz because we desire
swrface wawves propagating pamllel to the top
surface, implying periodicity leftward  and
fightward  Thus the leftmest and rightmost
boundaries and wertices share the state variables
o (displacement), » (welocity), and also
ielectrical potential) when appropriate. The
assignment iz showm in equation 3.
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In the case of a domain wmifarm in the
direction, this iz sufficient; the stucture period
equals the solution period. For the periodically
patterned  structures, where in general the
structhure period deoes not equal the sclution
period, we will show an adustment to the
equation.

4. Useof COM SOL Multiphysics
Throughout this work, @& apply the MEME

Module operating wmder the 2-D “Fiezo Flane
Strain (smppr)”™ Application Mode.  The tweo-



dirmensional mode is suitahle because we asswume
infinite extent of the structure in the umsed z
direction. This has the added adwantage of
reducing the spatial domain to teo ditnensions.
Figire 2 showrs a patterned layer structure (one-
ditnensional  swface Prnl) and  the 2-D
cormputational domain in « and »directicns only.

Figure 2. Example cross-sectional view of a patterned
thin film on a substrate. The computational domain
slice 1s enclosed with red dots.

We used unaltered material constants and
tensors from the MEM S Module material library,
The anisotropic or piezoelectric ophon ems
chozen where appropriate, eg. single crystal
silicon substrate or zine oxide film, respectivel v

The number of degrees of freedom (DOF)
allowed in the models was at least 500 and at
most 4,000 (piezcelectric film on silicon). The
mumnber of degrees of freedom was allowed to
change in each iteration as the struchure was
scaled to accommodate nearly 2*h penetrafion
depth.

The sinmlation was run on several desldaop
personal computers ninning COMSE0OL 353 on
Microzsoft Windows XP Professional with 1+
GHz 32-bit processor and 1+ GE EAM. Each
iteration required about one second, completing a
typical dispersion plot or band diagram in thirty
seconds to one minute, depending on the mumber
of wave munbers (iterations).

4.1 Solver Parameters

The following are the settings used consistently
through thiz work:

Solver hMode: Figenfrequency Analysis
Matix Symmetry. Hermitian
Figenvalues: 30

We require the Hermitian condition because
we later introduce complex-valued boundary
conditions i the case of the periodically
patterned  layered structwe. This struchre
requires additional modulation of the periodic
boundary to enforee the solution period distinet
from the structure period.

We allowr a large mirnber of modes, e g, 30,
over a wide frequency range because we are ahle
to szort them and cull those imelevant to
experitnental ohservation.

4.2 Meshing

Thizs work was accomplished exclusively
with default mesh settings. The adjoining
rectangular subdomains used the “Trhangular
(Adwancing Front)™ mesh with Schlag quadratic
elements. The munber and size were determined
automatically by COMEOL Multiphysics for re-
meshing in each iteration.



4.4 Mode sorting

In the foregoing configuration of the finite
element simulation, we noted the =d Aec
specification of the boundary conditions for
surface wawves. Bulk wawe resonances will still
be found; 1e. the system is imderdetermined with
respect to swrface waves.

To automatically distinguish the swface
modes from the bulk modes, we implemented a
mode sorting technique using the depth-weighted
strain energy. This does not explicitly classify
modes, rather the “depth of energy”™ measwre is
generally useful because all modes canying a
majority of energy at the swrface will produce
greater swrface displacements and are therefore
the most measwrable. We walidate this against
experitnental data in a subsequent section.

Lile the energy stored in a spring, the strain
potential energy is proportional to the square of
the displacement In general, the displacements
are noes complex due to the Bloch boundary
phasor of form: expl@tda). So our real-walued
measwre of acoustic energy is proportional to the
norm-square of each strain component.

The enerey function we employ iz the
centroid of strain energy along the v (depth) axis
of the sitmiation domain.  The following
equation shows the computation of “depth of
energy,” DOE, using both the x and » directed
strains 8, and &, at every point (x¥).
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In MATLAE code, the computation of the
mumerator is realized according to the following:

ymax = l.8*%lambda(j) + t_layers

doe_num(]] = ymax - ...
postint (fem, [7[ ox*conjjux)’
touy*conjfuy] ) * ¥ 1.
"solnum’, j)F

In results that follow, we use a simple
gelection ertenon: normalize the DOE to the
subdomain height, and establish a threshald for
relevant modes. We typically ignore modes with
normalized DOE greater than 0.2, ar 20% of the
depth of the simulation dormnain.

A graphical comparison of the DOE for
typical modes is included in Figure 4. Higher
order wersions of these modes also occur and are
included in the results of subsequent sections but
are not showm here.
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Figure 4. Depth of energy companson for three
modes produced by a single  eigenfrequency
simulation ower a silicon subdomain,  Vertical
displacement surface plots are shown to the right.

In Figure 4 it is clear the modes may be
strictly periodic in the x coordinate (SAW,
EBulk), or in both « and v coordinates. The latter




case corresponds to a combination of swrface and
bulk: propagation (LSAW).

5. Results
5.1 Dispersion in thin films

The case of acoustic wave dispersion in a
thin film ower an infinite half-space has bheen
extensively studied by Auld Solie, and others
[6] We present a structire cormmonly used to
generate  acoustic wawes In silicon:  a
piezoelectric zine oxide layer ower a silicon
substrate. This configiration recently has heen
evaluated both experimentally and munerically
for some practical acoustic deviees [4.5] .

For this lawered structure, one inhuitively
expects a fransition of behavior: as the acoustic
wavelength decreases the wave energy is
confined closer to the swface, and the wawve
“sees” only the film properties.  Thus the
velocity decreases from that of silicon to that of
Zn0 as the wawlength decreases (% increases).

We compare owr results to those obtained by
a Laguerre polynormial method, as shown in
Figire 5 and reported by Kim and Hunt in 1990
[71

c-axls Znd on <100=> 5i

ELIL TS
ool Sezawa
__ dnnat
3
g 3500+ LSAW
= 3000}
2500+
¥, Kim and W.D. Hunt|
2000 . . . . P . P .
L 0.5 1 1.5 2 L5 3 1.5 4

h"k
Figwre 5 Welocity dispersion disgram for a Znd
layer onver a silicon substrate.  The wave wvector is
normalized by layer thickmess, Comparison is made to
data computed by Laguerre polynomial expansion [7].

Mote the mode with greater welocity in
Figiwe 5. Thiz mode iz the first generalized
Lamb mode which becomes guided in the thin
film on the semi-nfinite substrate. The

generalized Lamb mode for the thin film !/
substrate wavweguide structire, denoted My, is
corrnmnly called the Sezawa mode [6].

5.2 Disper sion in 1-I thin film PnCs

In thiz test case, we simulate a structuoe
which Mazav et a. haw falricated and
experimnentally examined [8]. This example of a
one-dimensional (10 swrface phoncnic crystal
consists of a copper and silicon equal-width line
pattern on a silicon suketrate. Chur modeling of
the lattice unit cell for such a structure i showm
in the sagitfal section plot of Figure 6. The finite
element mesh iz illustrated by triangles.
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Figure 6. Mesh plot of the computational domain for
the unit cell of a surface phononic crystal reported by
A A Mamew[2].

The lattice constant, or period of struchre
replication along the x axis, iz denoted a
Periodic boundary conditions were applied to all
left and right boundaries and wertices (both
silicon dioxide and silicony. The perodic
constraints  were modified to0 include an
additional complex exponential phase factor
introducing the solution wavelength, A, where £
= 2n'h:

ulx) = ulx+a *explika)

; : &)
vix) =vix+a) *explika)
After solving according to these constraints,

Figire 7 reveals the many modes produced.

Each eigenfrequency point is colored according

to depth of energy, blue points would indicate



energy at the bottom of the computational
domain (impossible given the fized boundary
condition) and red points correspond to surface
modes.

Swrface wave band gaps appear when energy
can no longer propagate with certain £ wectors.
For example there may exist a range of
frequencies  (phonon  energies) and  wawve
nurnbers for which swrface modes do not exist.
This comesponds to a surface phononic band gap
in one dimension. [f there was instead a range of
frequencies for which no swface & wector
produced any mode, that would constitute a
complete surface phononic band gap in one
dimension.
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Figure 7. Frequency dispersion of all modes of the

phononic crietal stuctire.  Surface modes are shown
in red, and bulk modes (diagonal lines of dots) hae

shades of purple.

This concept can also be extended to 2D and
3D lattices for which the band gap iz complete if
it also exists for all 2D or 3D propagafion
directions, respectively.

In Figiwe 7 the modes which prevent a
commplete 1D phononic band gap are not pure
surface modes, they propagate and radiate enerey
away from the swface. Howewer, we are
inferested in the swrface modes, so we place a
threshold on the swface energy measwure,
selecting only modes with a normalized DOE <
0.2 This implies the strain energy centroid is
within the top 20% of the total structure height.
Figire 8 shouwe the modes thus selected agree
well with measurements from an impulsive laser
acoustic spectrometer [8].

- 1-D PnC: Si0, and Cu on <100> 5i
1080

Serawa
goo e

400

Frequency [MHz]

LSAW _..-o"
200} e

2 M)

0 0.1 [ 03 0.4 0.5
k*ai{2s)

Figure 8. 3AW dispersion showing a surfare wae
band gap along one dimension. FEM simmlation
fzolid dots) amd laser probe messurements (open
circles) show both leaky 3AW and Sezawa mod ez

6. Disassion

One of the advantages we notice with FEM iz
that arbifrary geometries may be handled quite
well. Pertrtation techniques, howewer, can only
extend a limited mnge from the given analytical
golution.

several authors such as Tlersten and Solie
have already demonstrated numerical results in
much better agreement with experiment than
perturhative methods [6]  Because our FEM
results agree =0 closely with these other
munerical techmiques and with at least one
physical experiment, we believe this approach is
generally more accurate for assessment of
arbitrary structures  relative to previous
treatments accurate in a narroes pertirbative
range.

Other numerical approaches for solving
surface waves in layered struchires are cormmon.
Several methods in the literature are quite similar
in formmiation of the eigenproblem specified in
this worke [7. 9 10]. In those studies, the
inhomogenemis struchure iz treated differently
Plane wawve propagation is typically assurmed and
the rumber of degrees of freedom is reduced
corsiderably.  In the Laguerre polynomial
approach, the polynormial was expanded to order
3, yielding 3(M+1)=13 eigenrmodes [7].

The present study required relatively few
degrees of freedom considering a finite element
approach. The results still agree well with both
theory and experiment This is also despite the
approxitration we made: specifying a 13



wavelength thick structure to emulate the semi-
infinite case. Unfortunately, perfectly matched
layers and infinite elements are not available to
simulate an infinite depth in this application
mode.

Over the many iterations of for production
of a dispersion plot, the consistent scaling of the
domain  corresponding to  the  acoustic
wavelength is important. Keeping such factors
constant  reduces the chance systematic
numerical dispersion could appear as an artifact.

7. Conclusions

We have shown the utility of COMSOL
Multiphysics for evaluation of surface acoustic
wave dispersion in layered structures of
anisofropic materials. We leveraged the
eigenfrequency solver of the MEMS Module and
its piezoelectric mode in addition to the fully
anisotropic material constants in our simulations.

The first simulated structure was a thin
piezoelectric zine oxide film on a single crystal
silicon substrate. The FEM dispersion data
closely matched the Laguerre polynomial result,
confirming its suitability for that case.

Our second simulated structure was a thin
film one-dimensional phononic crystal which has
previously been experimentally reported [8]. In
this case, the thin film had alternating (periodic)
material properties in the x direction. We
configured the model as a lattice unit cell by
assigning periodic boundary conditions, and we
varied the solution to show dispersion by
moedulating the boundary condition with a
complex exponential dependent upon the
acoustic wavelength.

Without  presuming  details of the
eigenfunctions, we have restricted the solutions
to surface modes using a centroid formulation for
the depth of acoustic energy. In a final step, we
demonstrated the success of the mode sorting
procedure to determine modes which are likely
to be observed by a laser acoustic spectrometer.
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