

Simulation of an Aerodynamic Furnace for Thermodynamic Data Acquisition J. M. Borgard, L. Soldi, A. Quaini, T. Alpettaz, E. Lizon and S. Gosse

DANS/DEN/DPC/SCCME/LM2T, CEA Saclay, 91191 Gif sur Yvette, France

INTRODUCTION: For high temperature thermodynamic data acquisition contactless acquisition methods are preferred to avoid chemical interactions with the container. A promising one is to use a spherical sample in aerodynamic levitation (ADL) heated by a laser beam at temperature up to 3000 K [1] in a conical nozzle. Density can be evaluated over a very large range of temperature by an infra-red camera by cutting off the laser beam and analyzing the temperature decay and profile of the sample (figure 1).

This technic has a major drawback: the nozzle obstructs the view to the whole sample. As experimental densities measurements appear slightly dependent of the size of the sample as well as the type of gas used (figure 2), the whole shape need to be checked and effective influence of the levitation

RESULTS:

Figure 3 shows the temperature map close to the sample for a 50 mg alumina sample in levitation at rest in argon gas. Figure 4 shows the pressure variation inside the nozzle and its impact at the bottom of the sample for 50 mg (left)and larger 100 mg sample (right). Figure 5 shows the average temperature decay after laser cut-off for a 50 mg alumina sample with O₂ as levitation gas compared with experimental data [1] and calculations with another carrier gas (argon) with a lower conductivity.

Figure 6 shows the temporal evolution of the volume

gas to be clarified.

Figure 1.

setup

using the spherical approximation (S) and COMSOL[®] global volume (C) estimation for various levitation gas.

Figure 3. temperature map close to sample at rest

Figure 2. review of estimation of liquid alumina density[2,3] including ADL estimations with spherical approximation

COMPUTATIONAL METHODS:

Challenges :

- Temperature gradient (1000 K / 10 µm) close to LG interface
- Sample position in noozle: major impact on gas flow
- Strong Marangoni effect due to temperature gradient (200K) inside sample

Software : Heat + Microfluidic Comsol® modules + moving mesh ALE

(first order Winslow smoothing for LG interface temporal evolution)

Convergence strategy :

Preliminary thermomechanical solution :

Figure 4. pressure variation for 50 and 100 mg samples at rest

Figure 5 average temperature decay after laser cut-off

Figure 6 volume variation estimation after laser cut-off for various gas

CONCLUSIONS:

In contrast to other levitation technics, temperature decay is not purely radiative and influence of conductivity of the levitation gas has to be taken into account. The gas impact on the bottom of the nozzle tends to deform the invisible part of the sample, therefore density evaluations from the camera are underevaluated. For aluminum oxide, in accordance with experimental data, oxygen seems the most stable

Undeformable spherical sample – no gravity – ramping viscosity

Controlled temporal iteration until stationary solution :

Balance internal and external forces at LG interface

 $\delta T = 1 e - 08 s \Delta T = 1.e - 04 s$

Vertical stabilization of sample

 $\delta T = 1 e - 05 s \Delta T = 1.e - 02 s$

Convergence of internal liquid flow $\delta T = 0,001 \text{ s} \Delta T = 2 \text{ s}$

carrier gas.

Future work will include a second laser and the numerical optimization of both laser beams profiles to minimize the temperature gradient in the sample and increase its stability.

REFERENCES:

- D. Langstaff, M. Gunn, G. N. Greaves, , A. Marsing and F. Kargl, Aerodynamic 1. levitator furnace for measuring thermophysical properties of refractory Liquids, Review of Scientific instrument 84, 2013
- 2. B. Glorieux, F. Millot, J.-C. Rifflet, and J.-P. Coutures, Density of Superheated and Undercooled Liquid Alumina by a Contactless Method, International Journal of Thermophysics, Vol. 20, No. 4, 1999
- 3. Paul-Francois Paradis et al 2004, non contact thermodynamical measurements of liquid and undercooled alumina, Jpn. J. Appl. Phys. 43 1496

Excerpt from the Proceedings of the 2018 COMSOL Conference in Lausanne