VDEh-Betriebsforschungsinstitut GmbH

COMSOL Application To Estimate 3d Blast Furnace Hearth Wear Using Thermocouple Measurements

Dr. Yalcin Kaymak*

Dr. Thorsten Hauck

Dr. Jörg Mernitz

Dr. Rongshan Lin

Dr. Harald Rausch

COMSOL CONFERENCE 2018 LAUSANNE

VDEh-Betriebsforschungsinstitut GmbH

DILLINGER[®]

shaft tuvere deadman hearth taphole slag iron

Blast furnace (BF) is a type of counter current shaft furnace used for iron ore reduction and smelting to produce industrial liquid iron.

End products are molten iron and slag phases tapped from the bottom, and flue gases leaving from the top of the furnace.

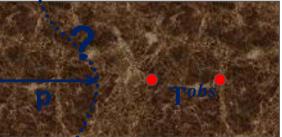
<u>Campaign life</u> of BF is <u>governed</u> by <u>erosion of</u> <u>hearth</u> refractory.

It is essential to keep track of residual lining thickness not only for better <u>planning of relining</u> but also for operational <u>safety</u> to avoid dangerous hearth breakthrough incidents.

22-24.10.2018

It is an inverse geometry problem of finding the best fitting wear profile to observed temperatures

- Wear surface geometry is described by Kriging technique from a set of parameters p
- > Optimization problem is stated as


Theory

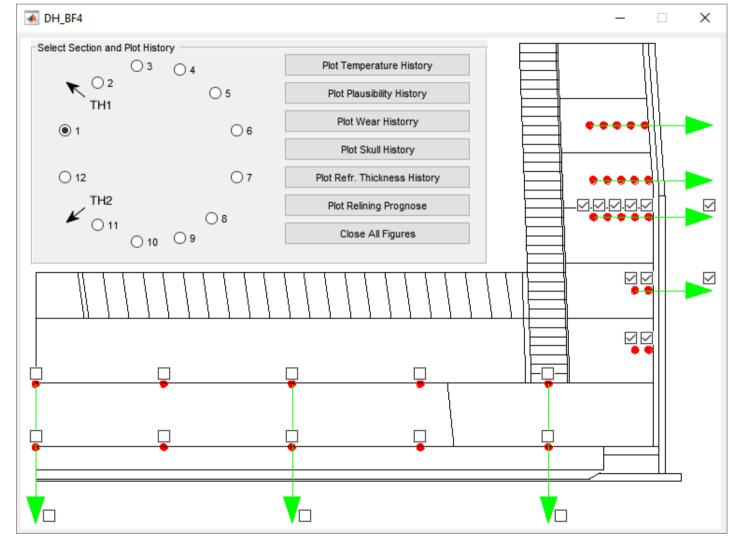
 $\mathbf{p}^* = \arg \min_{p \in \mathbb{R}^n} \frac{1}{2} \| \mathbf{T}(\mathbf{p}) - \mathbf{T}^{obs} \|$

> It is solved using Levenberg–Marquardt algorithm (LMA)

inverse heat transfer model

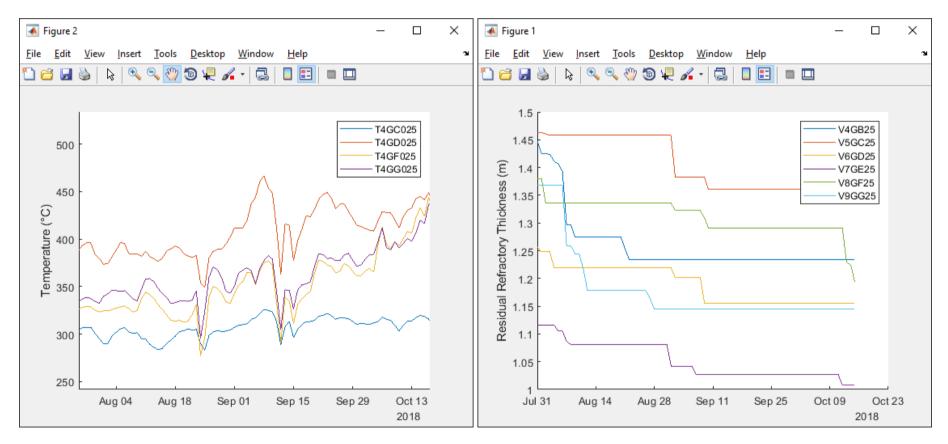
- > COMSOL Multiphysics is used to compute T(p)
- In a daily scheduled way, wear parameters are computed and saved automatically for measured temperatures T^{obs}

DILLINGER



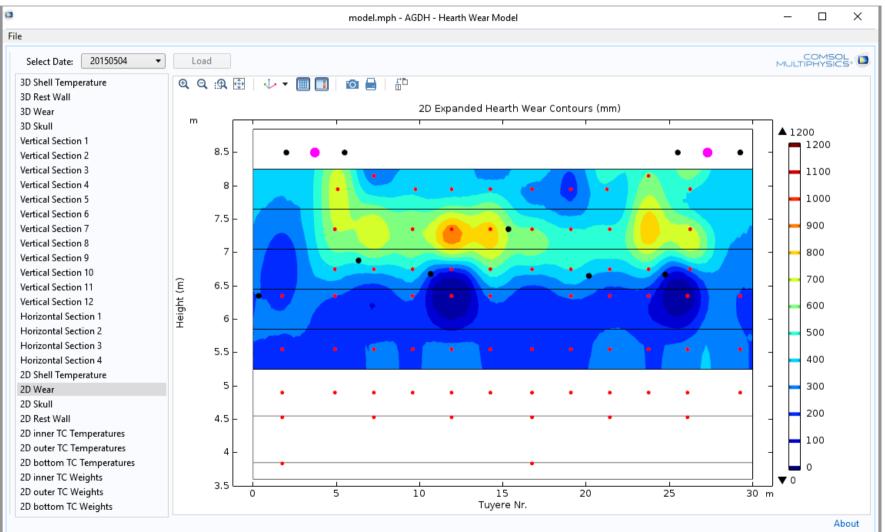
Application User Interface (UI) Matlab UI to view time evolutions

DILLINGER[®]



Results Temperature and residual wall thickness evolution

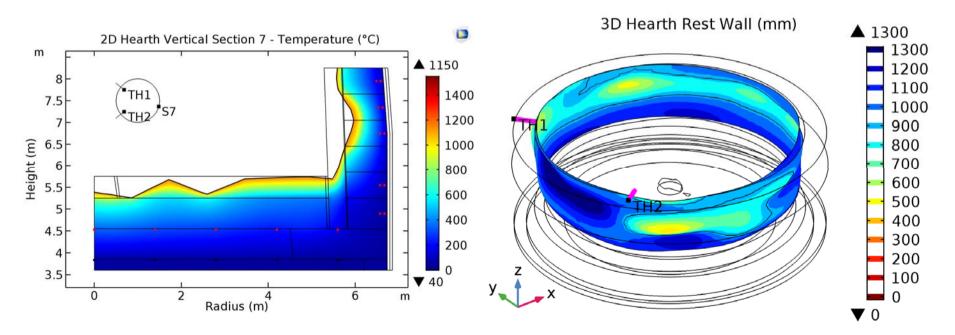
- > Temperature evolutions of 4 TC at a particular vertical section
- > Residual wall thickness evolutions at geometry parametrization points



Application User Interface (UI) COMSOL[®] UI to view daily results

DILLINGER[®]

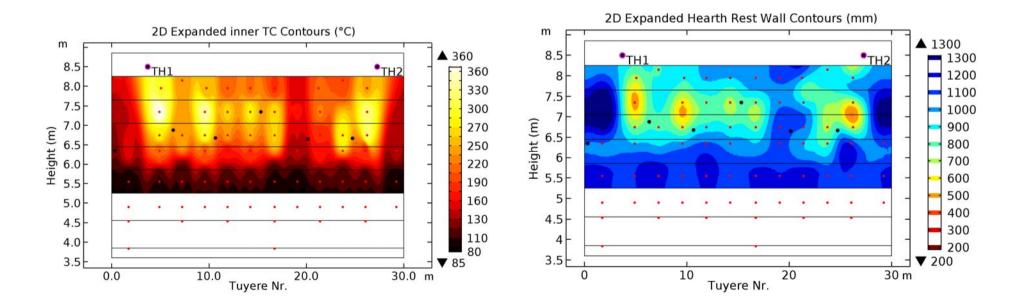
22-24.10.2018



Results 2d vertical section or 3d surface plots

DILLINGER

- Temperature contours for vertical section 7 with initial configuration plotted at background
- > Residual wall thickness contours plotted on the inner surface
- > Note that TH positions are highlighted for orientation



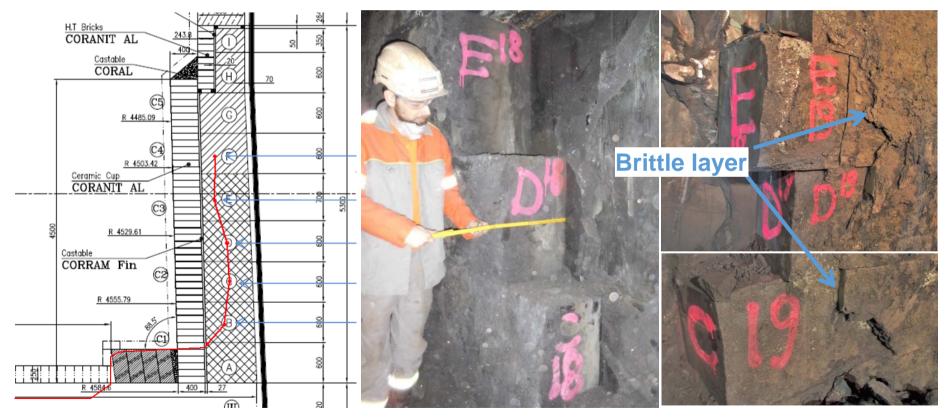
Results

2d unrolled contour plots for measured **DILLINGER**[®] temperature and residual wall thickness

- Wall has mostly double TCs. Interpolated temperature at hot side to show > hot spots with high wear
- 2d unrolled residual wall thickness contours fit good to hot spots >

ArcelorMitta

ArcelorMittal Eisenhüttenstadt Gmb


Model Validation

Estimated & observed wears compared

Direct comparison of estimated and observed residual wall thickness is only possible during a relining, which is done during relinings at Dillingen and Eisenhüttenstadt in 2016.

- Monitoring BF hearth lining state is <u>essential</u> not only <u>for</u> better <u>planning</u> of <u>relining</u> but also for operational <u>safety</u>.
- Modern BFs are equipped with many thermocouples (TC) in hearth refractory to monitor temperature level which increases with refractory wear.
- Inverse 3d heat transfer model has been developed to estimate hearth wear profile which fits best to TC measurements.
- > COMSOL Multiphysics[®] and LiveLink[™] for MATLAB[®] have been utilized to interpolate 3d wear profile and to solve temperature field.
- Model is <u>daily solved using COMSOL Server[™] with MATLAB[®]</u>.
- > Many different <u>results</u> accessible using <u>COMSOL[®] app UI and MATLAB[®] UI</u>.
- Model has been <u>calibrated and validated</u> by comparing estimated and measured residual wall thickness during <u>relinings at Eisenhüttenstadt and Dillingen</u>.

Thank you for your attention Incase you need to contact us

DILLINGER[®]

Dr. Yalcin Kaymak*• email: yalcin.kaymak@bfi.de• tel: +49 211 6707 299Dr. Thorsten Hauck• email: thorsten.hauck@bfi.de• tel: +49 211 6707 301VDEh Betriebsforschungsinstitute GmbH, Düsseldorf, NW, Germany

Dr. Jörg Mernitz • email: joerg.mernitz@arcelormittal.com • tel: +49 3364 37 3399 ArcelorMittal Eisenhüttenstadt GmbH, Eisenhüttenstadt, BB, Germany

Dr. Rongshan Lin	• email: rongshan.lin@dillinger.biz	∘ tel: +49 6831 47 3401
Dr. Harald Rausch	 email: <u>harald.rausch@dillinger.biz</u> 	∘ tel: +49 6831 47 3420
AG der Dillinger Hütte	enwerke, Dillingen, SL, Germany	

Acknowledgements: the work presented here has been carried out with a financial grant from the Research Fund for Coal and Steel (RFCS) of the European Community with Grant Agreement No: RFSR-CT-2015-00001 and project title "Optimizing Blast Furnace Hearth Inner State" (OPTIBLAFINS).

BF Hearth Wear App • Dr. Yalcin Kaymak