

COMSOL CONFERENCE 2017 ROTTERDAM

Assessment of feasible strategies for seasonal underground hydrogen storage in a saline aquifer

Elena Abarca, Alvaro Sainz-Garcia, Fidel Grandia

www.amphos21.com

Underground Hydrogen Storage (UHS)

- More renewable energy production to meet climate protection agreements
- Temporary mismatches between demand and supply \rightarrow Energy storage
- Conversion of **surplus energy** to H₂ by hydrolysis
- Storage of H_2 for its later use \rightarrow vehicles, re-electrification,...
- Large volumes \rightarrow Geological storage
 - Saline aquifers have large potential storage capacity

The Castilla León (Spain) case

- Leading wind power generation in Spain with **24%** of the national production
- Energy consumption is quite constant along the year, whereas wind power production is higher in fall and winter
 - Extra energy needed from June to September
 - Excess from October to May \rightarrow 377 GWh assuming a 4% of surplus energy
- If all this energy is converted to hydrogen \rightarrow 7242 tons H₂.

The Castilla León (Spain) case

- Duero basin a number of favorable structures for gas storage recognized in previous CCS projects (*ALGECO2 project*)
- San Pedro belt has been considered as candidate for hydrogen storage
 - Utrillas formation

*Data from ALGECO2 project

- Mathematical model
 - Immiscible fluids \rightarrow Low solubility
 - Pure H₂ gas phase
 - Temperature gradient

Mass conservation of each phase:

$$\partial_t (\phi \rho_\alpha S_\alpha) + \nabla \cdot (\rho_\alpha q_\alpha) - q_\alpha^0 = 0, \qquad \alpha = l, g$$
$$q_\alpha = -\frac{kk_{r,\alpha}}{\mu_\alpha} (\nabla P_\alpha - \rho_\alpha g)$$

Algebraic equations

Total saturation $S_n + S_w = 1$
 $P_{cap} = P_n - P_w$
 $P_{cap} = P_{cap}(S_w)$ Gas volume $V_g = V_g(p_g, T,)$
Liquid densityCapillarity pressure $P_{cap} = P_{cap}(S_w)$
 $P_{cap} = P_{cap}(S_w)$ Liquid density $\rho_l = \rho_l(p_l, T,)$
 $\mu_g = \mu_g(p_g, T,)$ Relative permeability $k_l^r, k_g^r = f(S_w)$...

- Mathematical model
 - Linear combination of equations with

Variable
$$S_g \quad \partial_t (\phi \rho_g S_g) + \nabla \cdot (\rho_g q_g) - q_g^0 = 0$$

Variable $P_l \quad \sum_{\alpha = l,g} (\partial_t (\phi \rho_\alpha S_\alpha) + \nabla \cdot (\rho_\alpha q_\alpha) - q_\alpha^0) = 0$

Brooks-Corey retention curve equations

Name	Expression
Effective saturation	$S_g = \frac{S_l - S_l^r}{1 - S_l^r - S_g^r}$
Capillary pressure	$P_c = P_t S_e^{-1/\omega}$
Relative liquid permeability	$k_l^r = S_e^{\frac{2+3\omega}{\omega}}$
Relative gas permeability	$k_g^r = (1 - S_g)^2 \left(1 - S_g \frac{2 + \omega}{\omega}\right)$

The model is implemented in the as a coeficient form PDE interface

- Boundary conditions
 - Lateral prescribed hydrostatic pressure
 - Injection mass flux (Neumann Condition)
 - **Extraction** Cauchy condition in the wells
 - Wells stop if $S_g < 0.4$
 - Pressure kept between 3 and 8 MPa

$$\Rightarrow \quad q_{\alpha}^{0} = -\frac{k_{well}k_{\alpha}^{r}}{\mu_{\alpha}}\rho_{\alpha}(P_{\alpha} - P_{well})$$

2,7x10⁵ tetrahedral elements

- 1 injection well
- 3 extraction well configurations

- Operation scheme
 - 1^{st} of constant injection of 7492 tons of H_2
 - 3 years of actual operation:
 - Injection of 7242 tons H₂ in 243 days (from October to May)
 - Extraction ???? tons H₂ in 122 days (from June to September)

• Parameters

	Parameter	Symbol	Value	Unit
Aquifer	Porosity*	ϕ	0.2	-
	Permeability*	k	1x10 ⁻¹³	m^2
	Earth surface temperature	T _o	298	Κ
	Thermal gradient	k_T	0.027	$K \cdot m^{-1}$
Retention curve	Entry Pressure	P_t	1x10 ⁵	Ра
	Pore index	ω	2	-
	Residual liquid saturation	S_l^r	0.3	-
	Residual gas saturation	S_g^r	0	-
Extraction boundary condition	Well liquid pressure	P_{well}	3x10 ⁶	Pa
	Well permeability	k_{well}	1x10 ⁻¹³	m^2

* Data taken from the ALGECO2 project.

H_2 saturation

- The location of the extraction wells controls the efficiency of H₂ storage
- Injection \rightarrow similar flow rate between models
- Extraction → Case B and Case C (1st year 1 well) shut down due to upconing

- Each year the amount of produced hydrogen increases for all cases
- Case C the best recovering ratio
- After 3 years all cases have reasonable recovery rations (up to 78%)

Amount of H₂ produced

Conclusions

- Reasonable recovery ratios for seasonal energy mismatches
 - 15% of the electricity consumed in the city of Burgos (175.000 inhabitants) in from June to September*
 - No H_2 crosses the spill point
 - no viscous fingering occur
- Steeply dipping structures are critical
- Upconing is the major risk on saline aquifer storage without using cushion gas
 - Appropriate extraction well configuration
 - Monitoring

ESPAÑA

Paseo de García Faria, 49-51 08019 Barcelona Tel.: +34 93 583 05 00

Paseo de la Castellana 40, 8ª Planta 28046 Madrid Tel.: +34 620634729

CHILE

Avda. Nueva Tajamar, 481 WTC – Torre Sur – Of 1005 Las Condes, Santiago Tel.: +562 2 7991630

PERÚ

Jr. Pietro Torrigiano 396 San Borja, Lima 41 Tel.: +51 1 592 1275

FRANCE

92 Rue du Sergent Blandan 54000 Nancy Tel.: +33 645 766 322

http://www.amphos21.com amphos21@amphos21.com