Getting State-Space Models from FEM Simulations

Jos van Schijndel

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

TU

Overview

- Background on my work
- State-Space models, WHAT and WHY
- How to get them from FEM

Overview

Background on my work

- State-Space models, WHAT and WHY
- How to get them from FEM

Background

Assistant professor

Since 1998 COMSOL® User

CompuToolAble

Entrepreneur

Since 2015

The Built Environment is Multiscale

Physics of the Built Environment Scale level [mm]

Material ~ mm

Material Physics

Durability
Energy

Physics of the Built Environment Scale level [m]

Construction ~ m

Construction Physics •Safety •Durability •Energy

Physics of the Built Environment Scale level [10 m]

Building ~ 10 m

Building Physics
Indoor Climate (T,RH,v,Pollutant)
Building systems
Health
Energy

Physics of the Built Environment Scale level [km]

Urban Area ~ km

Urban Physics •Urban Climate (Pollutant, Wind) •Urban Systems •Aquifer •Energy

Modeling the Built Environment Physics and Scales

Physics Scales	Heat	Moisture	Air	Pollutant	Stress
~ mm					
~ m					
~ 10m					
~ km					

Overview

- Background on my work
- State-Space models, WHAT and WHY
- How to get them from FEM

What are State-Space models?

Technische Universiteit Eindhoven University of Technology

Why are State-Space models so handy?

A(1,1) = (-1/(R1*C1) - 1/(R2*C1));A(1,2) = (1/(R2*C1));A(2,1) = (1/(R2*C2));A(2,2) = (-1/(R2*C2) - 1/(R3*C2));A(2,3) = (1/(R3*C2));A(3,2) = (1/(R3*C3));A(3,3) = (-1/(R3*C3) - 1/(R4*C3));A(3, 4) = (1/(R4*C3));A(4,3) = (1/(R4*C4));A(4, 4) = (-1/(R4*C4))%B calc B(1,1) = (1/(R1*C1));B(2,1)=0;B(3, 1) = 0;B(4,1)=0;%C calc $C = [0 \ 0 \ 0 \ 1];$ %D calc

D=0;

TU/e Technische Universiteit Eindhoven University of Technology

Why are State-Space models so handy?

B= 3.0303e-04 0 0 C=[0 0 0 1];

TU/e Technische Universiteit Eindhoven University of Technology

Why are State-Space models so handy?

- Compact notation of dynamic systems
- The availability of high quality public domain solvers for state-space systems (Octave, Python, R, ...)
- These State-Space model solvers are extremely efficient in simulating dynamic responses.

Overview

- Background on my work
- State-Space models, WHAT and WHY
- How to get them from FEM

State Space systems from FEM

(1) Creating a full state-space matrix system using specific COMSOL functionality and including reduced order systems

- (2) Using identification techniques for example the MatLab identification Toolbox to fit SS systems
- (3) Creating a lumped parameter SS model from first principles, where parameters have a physical meaning.

State Space systems from FEM COMSOL MatLab functionality

```
%Extract full SS model
M2 = mphstate(model,'soll','out',{'A' 'B' 'C'
'D' 'x0'},...
'input','mod1.var1', 'output',
'mod1.dom1');
```

```
%Create system in MatLab
sys2= ss(M2.A,M2.B,M2.C,M2.D);
```

```
%Simulate full SS
y2=lsim(sys2,u,t,M2.x0);
```

```
%Reduce order
Options = balredOptions();
sys2Reduced2 = balred(sys2,8,Options);
```

```
%Simulate reduced SS
y3=lsim(sys2Reduced2,u,t);
```


State Space systems from FEM Identification MatLab Toolbox

Configure Estimate							
- Continues							
Model name: niha1	1						
Model type: Hamme	rstein-Wiener 💌			Init	islice		
utt + Inp	A Noninearity Linear Hammerstein-V	Block Wiener mod	+Cutput Nor el	linear by 900	•		
L'O Nonlinearity Lin	ear Block						
Channel Names	Nonlinearity		No. of Units				
Input Channels							
ul	Sigmoid Netw	ork 1	0				
Output Channels	A Transfer Functions				0		
y1	Model name: tf1 🥒				000000000		
	Number of poles: 2						
	Abundan ad annual A						
	@ Continuous-time	C Discrete	-time (Ts =	0.08) 🗍 Feed	bhrough		
	VO Delay						
	Output: y1						
	Input	Delay	Fixed	Moimum	Maximur		
	power	0	1 83	0	2.4		
	Estimation Options						

Ue Technische Universiteit Eindhoven University of Technology

State Space systems from FEM First principles

B= 3.0303e-04 0 0 C=[0 0 0 1];

TUe Technische Universiteit Eindhoven University of Technology

State Space systems from FEM Results

State Space systems from FEM Results

e Technische Universiteit Eindhoven University of Technology

T

State Space systems from FEM Results

TU/e Technische Universiteit Eindhoven University of Technology

State Space systems from FEM Conclusions

- All three approaches: are capable of significantly reduce computation duration time without loss of accuracy.
- Comparing the three approaches from a physical point of view, the lumped parameter model is preferable
 - because its parameters (state-space matrices) have a physical meaning
 - therefore parameters studies can be done without the necessity to simulate the FEM model over and over again.
- Finally, notice that no general conclusions can be obtained from this rather limited study.

