## from FEM Simulations

Getting State-Space Models

Jos van Schijndel

## Overview

- Background on my work
- State-Space models, WHAT and WHY
- How to get them from FEM



## Overview

- Background on my work
- State-Space models, WHAT and WHY
- How to get them from FEM


## Background

TU/e

Assistant professor
Since 1998 COMSOL ${ }^{\circledR}$ User

## CompuToolAble

Entrepreneur
Since 2015


Qechnische Universiteit $\begin{aligned} & \text { Tindhoven } \\ & \text { University of Technology }\end{aligned}$

## The Built Environment is Multiscale



## Physics of the Built Environment Scale level [mm]



Material ~ mm


Material Physics
-Durability
-Energy


## Physics of the Built Environment Scale level [m]



Construction ~ m

Construction Physics
-Safety
-Durability
-Energy

## Physics of the Built Environment Scale level [10 m]



Building ~ 10 m
Building Physics
-Indoor Climate (T,RH,v,Pollutant)
-Building systems
-Health
-Energy

## Physics of the Built Environment Scale level [km]



Urban Area ~km


Urban Physics
-Urban Climate (Pollutant, Wind)
-Urban Systems

- Aquifer
-Energy


## Modeling the Built Environment Physics and Scales

| Physics Scales | Heat | Moisture | Air | Pollutant | Stress |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

## Overview

- Background on my work
- State-Space models, WHAT and WHY
- How to get them from FEM


## What are State-Space models?

$$
\begin{aligned}
& \text { n } \times 1 \text { vector }
\end{aligned}
$$

## Why are State-Space models so handy?


$c_{4} \frac{d T_{4}}{d t}=\frac{T_{3}-T_{4}}{R_{4}}$

```
A (1,1) = (-1/(R1*C1) -1/(R2*C1));
A(1,2)=( 1/(R2*C1));
A (2,1) = (1/(R2*C2));
A (2,2) = (-1/(R2*C2)-1/(R3*C2));
A (2,3)=( 1/(R3*C2));
A (3,2) = (1/(R3*C3));
A (3,3) = (-1/(R3*C3)-1/(R4*C3));
A (3,4)=( 1/(R4*C3));
A (4,3)=(1/(R4*C4));
A (4,4)=(-1/(R4*C4))
%B calc
B (1, 1)=(1/(R1*C1));
B (2,1) =0;
B (3,1) =0;
B (4,1)=0;
%C calc
C=[[0 0 0 1];
%D calc
D=0;
```


## Why are State-Space models so handy?


$\mathrm{C}=\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]$;
$\mathrm{D}=0$;

## Why are State-Space models so handy?

- Compact notation of dynamic systems
- The availability of high quality public domain solvers for state-space systems (Octave, Python, R, ...)
- These State-Space model solvers are extremely efficient in simulating dynamic responses.


## Overview

- Background on my work
- State-Space models, WHAT and WHY
- How to get them from FEM


## State Space systems from FEM

(1) Creating a full state-space matrix system using specific COMSOL functionality and including reduced order systems
(2) Using identification techniques for example the MatLab identification Toolbox to fit SS systems
(3) Creating a lumped parameter SS model from first principles, where parameters have a physical meaning.

## State Space systems from FEM COMSOL MatLab functionality

```
%Extract full SS model
M2 = mphstate(model,'sol1','out',{'A' 'B' 'C'
'D' 'x0'},...
    'input','mod1.var1', 'output',
'mod1.dom1');
%Create system in MatLab
sys2= ss(M2.A,M2.B,M2.C,M2.D);
%Simulate full SS
y2=lsim(sys2,u,t,M2.x0);
%Reduce order
Options = balredOptions();
sys2Reduced2 = balred(sys2,8,Options);
%Simulate reduced SS
y3=lsim(sys2Reduced2,u,t);
```


## State Space systems from FEM Identification MatLab Toolbox




## State Space systems from FEM First principles


$\mathrm{C}=\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]$;
$\mathrm{D}=0$;

## State Space systems from FEM Results



## State Space systems from FEM Results

Time $=0 \mathrm{~s}$ Surface: Temperature (degc)


TU/e

## State Space systems from FEM Results




## State Space systems from FEM Conclusions

- All three approaches: are capable of significantly reduce computation duration time without loss of accuracy.
- Comparing the three approaches from a physical point of view, the lumped parameter model is preferable
- because its parameters (state-space matrices) have a physical meaning
- therefore parameters studies can be done without the necessity to simulate the FEM model over and over again.
- Finally, notice that no general conclusions can be obtained from this rather limited study.

