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Introduction 
 
Flash floods are sudden and mostly destructive rushes 
of water down narrow gullies or over sloping 
surfaces. They are mostly caused by heavy rainfall in 
the upstream watershed. They may also appear as 
result of catastrophic events as dam or levee breaks, 
mudslides or debris flow.  
 
The occurrence of flash floods is determined by 
many factors, like intensity, location and distribution 
of the rainfall, topography, land use and vegetation 
cover, soil type, and soil saturation. These factors 
determine the spatial and temporal development of a 
flood. Urban areas are also prone to flash floods, 
because impervious surfaces prevent water to 
infiltrate into the ground. Moreover damages are 
more severe in highly populated areas than in the 
remote countryside.  
 
The simulation of flash floods has thus become a tool 
that is increasingly used. One application area is 
urban planning. In general flood modelling is utilized 
to delineate flood risk maps. Moreover such tools are 
applied in early warning systems, in order to predict 
the rush of a fluid front as reaction of a certain 
rainfall event.   
 
Modelling Approaches 
 
Most modellers prefer the 2D depth averaged 
formulation in flash flood simulations in contrast to 
the general 3D formulation. The 2D version 
definitely has advantages concerning the general 
formulation with respect to computer resources. Near 
the fluid front mesh refinement is required, which 
highly increases the computational cost of 3D 
models.  
 
The 2D approach leads to the shallow water 
equations (SWE), also known as Saint-Venant 
equations.  Vertical velocities are usually much 
smaller than horizontal components, and are thus 
neglected. SWE consists of three coupled differential 
equations, one for the height of the water column and 
two for the mean horizontal velocity components. 
The system can be implemented in COMSOL 
Multiphysics using pde-modes. We utilized a physics 

mode for the SWE (Schlegel 2012). The SWE can be 
written as: 

∂η
∂t

+∇⋅ Hu( ) = 0  (1) 

   
∂u
∂t

+ u ⋅∇( )u+ g∇H −F = 0  (2) 

with total water depth H, water height above 
reference height η, velocity vector u, acceleration 
and due to gravity g (Takase et al. 2010). In the 
vector F the contributions of all other forces are 
gathered. The equations are derived from the volume 
and momentum conservation principles, formulated 
on depth-averaged variables. The derivation is based 
on several assumptions: the fluid is incompressible, 
in the vertical direction there is hydrostatic pressure 
distribution, depth-averaged values can be used for 
all properties and variables, the bottom slopes are 
small, there are no density effects from variable fluid 
density or fluid viscosity, the eddy viscosity is much 
larger than molecular viscosity, atmospheric pressure 
gradient can be ignored, etc. The system of equations 
(1) and (2) is nonlinear. 
 
Friction at the walls, i.e. at the interfaces between 
fluid and solid, can be taken into account by an 
additional term in equation (2) (Brufau & García-
Navarro 2000, Duran 2015): 

   

∂u
∂t

+ u ⋅∇( )u+ g∇H + gηn2 u
η4/3 u−F = 0  (3) 

with Manning coefficient n. Heniche et al. (2000) 
add another term to consider the influence of wind 
speed at the surface of the shallow water body. In this 
work we focus on the original form, i.e. equation (2). 
Some test runs with equation (3) showed no 
relevance of friction for the considered test cases. 
Wind speed effects are neglected, as they are likely to 
be irrelevant in highly dynamic dam break scenarios. 
 
It is well-known that the solution of the SWEs (1)(2) 
may suffer from severe instabilities. Straightforward 
modelling, either using finite differences or finite 
element techniques, leads to spurious oscillations. 
For that reason various stabilization schemes have 
been proposed. The most basic method is the 
introduction of an artificial viscosity, which appears 
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in an additional term on the left side of equations (2) 
(Chen et al. 2013): 

   
∂u
∂t

+ u ⋅∇( )u+ g∇H −ν∇2u−F = 0  (4) 

with artificial viscosity ν. This is done in analogy 
with stabilisation methods for the advection-diffusion 
equation, where similar numerical problems arise 
simulating almost sharp chemical or thermal fronts.  
 
The method of artificial viscosity successfully 
stabilizes the solution and prevents oscillatory errors. 
However this method introduces a numerical 
diffusion, which is not presented in the original 
equations and in real systems. Gradients are 
smoothed, but without physical justification, i.e. the 
method is inconsistent. Consistent stabilization 
methods have been derived.  
 

1D Dambreak Benchmark  
 
Dam break models that are used for benchmarking, 
are based on a highly simplified concept of a real 
dam break. The breaking wall itself does not appear 
in the simple setting. The simulation starts at time t=0 
with the steep step of the water table at the interface 
between the reservoir and backwater region. Starting 
from this highly idealized step situation models based 
on the SWE simulate the development of the water 
table for t>0. The simple set-up includes two water 
heights: one higher value for the reservoir (h1) and a 
lower (h0) for the backwater. These two values, 
together with the parts of the model region in which 
they prevail, constitute the initial condition.  
 
In a 1D model the interface between reservoir and 
backwater is just the position x0, at which the dam 
and thus the initial water table jump is located; see 
the sketch in Figure 1. With this the physical 
parameters of the classical 1D dam break problem are 
completed.  

 
Figure 1. Sketch of 1D dam break model, showing initial 
conditions and terminology  
 

A fact that makes the dam break problem attractive as 
a benchmark is that an analytical solution exists. For 
the given setting an analytical solution has been 
provided by Stoker (1957), which we will utilize 
below. It consists mainly of two waves (of different 
kind), one moving into the reservoir and one into the 
backwater region.  

  
Figure 2. Sketch of the analytical solution for the 1D dam 
break model in the x-t diagram  
 
If not mentioned otherwise we report results on the 
reference case described above with parameter values 
h1=2 m and h0=1 m. Model region is the unit length 
interval x ∈ 0,1⎡⎣ ⎤⎦  m with dam break position at 

x0=0.5 m.  
 
The first examples highlight the numerical problems 
involved with the solution of the nonlinear SWE. 
Straight forward implementation of standard 
numerical methods without any stabilization leads to 
inacceptable oscillations, as illustrated in Figure 3a, 
showing initial and simulated water tables at selected 
times after dam break. The problem of spurious 
oscillations was reported already in the early days of 
numerical modeling.  
 
The well-known problem of spurious oscillations can 
be resolved by using an artificial viscosity to stabilize 
the solution. However, this solution is inconsistent. It 
leads to a numerical diffusion, which is smoothing all 
gradients. Thus sharp slopes become less steep, even 
at parts where steep gradients are physically correct. 
However there are consistent stabilization methods, 
as outlined above, which avoid the global smoothing. 
Figure 3b illustrates the effect of numerical diffusion 
clearly. In the figure results are compared for 
inconsistent and consistent stabilization. For the latter 
we combined streamline diffusion and shock 
capturing stabilization. 
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It was explored how the model performs in 
dependence of the order of the finite elements. Figure 
3c illustrates the outcome for linear and quadratic 
elements. Obviously the steep front is better resolved 
by the quadratic elements. This can be attributed to 
the fact that the spatial resolution of the numerical 
approach based on quadratic elements is finer than 

for same number of linear elements. However, the 
figure also reveals that at the front quadratic elements 
are more prone to oscillations and instabilities than 
linear elements. For that reason and the fact that the 
better suppression of numerical diffusion is paid by a 
higher number of degrees of freedom (DOFs), it can 
be concluded that linear elements are preferable.  

 

 

 

 
Figure 3 a,b,c. Height results of 1D benchmark for front propagation after dam break: (a) no stabilization, (b) comparison of 
consistent (with markers) and inconsistent (gray) stabilization, (c) comparison of linear (with markers) and quadratic (gray) 
element  
 
2D Benchmark 
 
In 2D the dam break models used for benchmarking 
differ in the geometry of the model regions, and 
concerning the initial conditions as well. A quadratic 
model region with 200 m side length and with 75 m 
long partial break of a straight dam has been chosen 
in several benchmark studies (Biscarini et al. 2010, 
Baghlani 2011, Vosoughifar et al. 2013, Jalalpour & 
Tabandeh 2014).  
 
Most simple is the radial dam break model, where an 
(unrealistic) circular dam surrounds the origin of the 
coordinate system. In the mathematical analysis this 
problem than can be reduced to 1D, if a cylindrical 
coordinate system is used. Despite of the unrealistic 
features it is a convenient test case for the numerical 
models in 2D, in particular for the quantification of 

errors induced by meshes in Cartesian coordinates 
(Erpicum et al. 2000, Baghlani 2011, Remacle et al. 
2003, Pilotti et al. 2010, Jalalpour & Tabandeh 
2014).  
 
Models for the 2D dam break with a quarter circular 
dam, as described above, are examined in detail. The 
major observed phenomena are very similar to the 1D 
case. There is a wave that moves into the reservoir, 
where the water table lowers. This corresponds with 
the simple wave region of the 1D case. In opposite 
direction a shock wave penetrates into the backwater 
region. In contrast to the 1D analytical solution the 
shock is not a pure step function. The transition from 
the simple wave to the shock wave region appears 
quite abrupt.  

a 
 

b 
 

c 
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For error investigations we examine the 2D solutions 
along the two diagonals of the model region. Along 
the main diagonal one can observe the longitudinal 
wave movement. However, when the model is run 
without any stabilization spurious oscillations 
dominate the picture, as demonstrated in Figure 9a. 
As in the 1D benchmark these results are clearly 
unacceptable. Using stabilization techniques the 
movement of the wave can be simulated. That is 
demonstrated in in Figure 9b, where the results with 
inconsistent and consistent stabilization can be 
compared. Clearly the inconsistent method introduces 
numerical diffusion, which makes this method 
unacceptable as well. As consistent stabilization 
methods we used streamline diffusion and shock 
capturing.  

For the consistent stabilization techniques Figure 9c 
shows the effect of two mesh refinements on the front 
development in longitudinal direction. The effect of 
mesh refinement is a steepening of the fronts, which 
is effective on the left side, at the transition between 
simple wave and shock wave regime and most clearly 
at the front of the shock wave. Higher accuracy was 
achieved at the cost of increased computer resources. 
The reference mesh has 7803 DOF and the 
simulation took 43 s execution time. The refined 
model needed considerably more computer resources: 
30603 DOF and 10:23 min execution time. The 
double refined mesh has 121203 DOF and needed 1 h 
23:41 min for execution. 

 

 

 

 
Figure 4 a,b,c. Front propagation after dam break (2D) along the main diagonal at selected time instances: (a) no stabilization, 
(b) comparison of solutions obtained with consistent and inconsistent stabilization, (c) comparison of results with consistent 
stabilization with two grid refinements: reference mesh (gray), refined mesh (spacing 0.01 m, black), and double refined mesh 
(spacing 0.005 m, color)

a 
 

b 
 

c 
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2D Benchmark with Obstacle 
 
Finally we show results of our numerical approach 
for one of the dam break benchmarks proposed by the 
IMPACT project (2001). The project on 
‘Investigation of Extreme Flood Processes & 
Uncertainty’ was funded by the European Union 
during the years 2001 and 2004. Within the work-
package on flood propagation flood wave (dambreak 
etc.) propagation models were investigated. The test 
case which probably attracted most interest is ‘the 
isolated building test case’, which we chose for 
simulation, too. 
 
It is a 2D problem with a rectangular obstacle located 
in the backwater. The model was treated 
experimentally and modelled numerically by several 
groups within the IMPACT project. The experiment 
is documented by Soares Fracão et al. (2004) and 
Soares Fracão et al. (2011), a detailed modelling 
study is presented by Remacle et al. (2006).  
 
The channel has a total length of 35.80 m and is 3.60 
m wide. The obstacle is located 3.40 m downstream 
from the dam. The initial conditions consist in a 0.40 
m water level in the upstream reservoir and a 0.02 m 
thin water layer in the downstream channel. There is 
a no-flow no-slip condition along walls are closed 
The Manning friction coefficient of equation (3) was 
chosen is n = 0.01.  
 
For modelling with COMSOL Multiphysics we 
utilized the findings from the simpler 1D and 2D 
benchmarks described before. Thus we chose 
adaptive mesh method with maximal four 
refinements. The initial mesh is irregular and consists 
of 3544 elements. Using adaptive meshing the mesh 
was refined several times, with a mean size of 10832 
triangular elements. Figure 5 depicts the results after 
a t=0.66 s, 1.97 s and after 3 s. We show water height 
in a zoomed in region, upstream and downstream of 
the dam.  
 
 
 
 

 

 

 
Figure 5 a,b,c. Water table height distribution for the 
IMPACT test-case with obstacle, for times t=0.66 s (top), 2 
s (center) and 3 s (bottom) after dam break; see text for 
details   
 
Conclusions 
 
For the 1D and 2D classical benchmarks we checked 
numerically computed shock waves using the 
analytical solution. Straight forward discretization 
leads to spurious oscillations. Inconsistent 
stabilization supresses the oscillations, but introduces 
a numerical viscosity error. Quadratic elements 
produce more accurate solutions than linear elements.   
 
However, for the usual parameter range, both in 1D 
and 2D, adaptive meshing techniques lead to accurate 
solutions requiring much less computational 
resources than simulations on fixed meshes. In 2D 
adaptive meshing reduces the model size by almost 
one order of magnitude, and the execution time by a 
factor of 20. 
 
 
 
 

a 
 

b 
 

c 
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