COMSOL Conference 2008 Boston Fourth Annual Conference on Multiphysics Simulation

Renaissance Boston Waterfront October 9-11, 2008 Boston, MA

Analysis of Heat, Mass Transport, & Momentum Transport Effects in Complex Catalyst Shapes for Gas-Phase Heterogeneous Reactions Using COMSOL Multiphysics

Session on Transport Phenomena - October 9, 2008

Anuradha Nagaraj Department of Electrical Engineering & Computer Science

Suresh Bikkina and Patrick L. Mills*

Department of Chemical and Natural Gas Engineering, Texas A&M University - Kingsville Kingsville, Texas USA *Patrick.Mills@tamuk.edu

Motivation

 Various catalyst particle shapes are sold commercially for a wide variety of process technologies

6 mm Hollow Cylinders .

1/16-in Tri-lobe Extrudates ..

5 to 30 μm Catalyst Powder Precursor

12 mm Hollow Cylinders

20 mm Hollow Cylinders

•• 6 mm Hollow Cylinders

5 to 30 μm Catalyst Powder Precursor

1/8-in Extrudates

- Preferred shapes are often obtained by empirical methods
- Examine Comsol Multiphysics as a platform for quantifying the effect of catalyst shape on reactor performance

Applications: Theoretical, Practical, and Pedagogical

Examples of Catalyst Shapes - 1

Hollow Cylinder

Hollow Cylinder

Grooved Pyramid

Tri-lobe

Ribbed, Hollow Cylinder

Notched Cube

J. R. Ebner & R. A. Keppel, Shaped Oxidation Catalyst, US 5,168,090 Monsanto 1992

Examples of Catalyst Shapes - 2

Notched Cylinder

Grooved Cone

4-Point Star

J. R. Ebner & R. A. Keppel, Shaped Oxidation Catalyst, US 5,168,090 Monsanto 1992

Typical Packed Bed Reactor Configurations

Multi-tubular

Overall Goal: Maximize activity and selectivity while minimizing pressure drop & cost

Adiabatic

 $D_{R} = 5 \text{ to } 50 \text{ ft}$

 $H_R > 3 \text{ to } 4 \text{ ft}$

Inert Particles for

Catalyst Particles

Inert Particles for

Catalyst Support

Catalyst Discharge

Flange

Gas Distribution

Approaches to Catalyst Particle Modeling

 Numerous papers on modelling of transport-kinetic interactions in catalyst particles

Rutherford Aris, "On shape factors for irregular particles – I. The steady-state problem. Diffusion & reaction. *Chem. Engng. Sci.* **6**: 262-268 (1957)

Variety of solution methods & numerical techniques

Analytical, semi-analytical, finite difference, finite element, method of lines, etc

P. A. Ramachandran, "Boundary integral element method for linear diffusion-reaction problems with discontinuous boundary conditions. *Chem. Eng. J.* **47**: 169 (1991).

Some approaches are driven by process applications

J. S. S. Mohammadzadeh and A. Zamaniyan, "Catalyst shape as a design parameter for methane-steam reforming catalyst." Inst Chem Eng (UK), **80** (2002)

 Comsol Multiphysics provides powerful platform for multi-scale modeling and parametric analysis

Transport & Reaction in Porous Catalysts

- Widely studied & analyzed since Thiele's & Aris' classic papers and monograph on the subject
 - E. W. Thiele, "Relation between catalytic activity and size of particle." *Ind. Eng. Chem.* **31**: 916-920 (1939).
 - Rutherford Aris, "On shape factors for irregular particles I. The steady-state problem. Diffusion & reaction. *Chem. Engng. Sci.* **6**: 262-268 (1957).
 - Rutherford Aris, *The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts.* Volume 1 and Volume 2, Oxford: Clarendon Press (1975).

Species Mass Balance

$$\nabla \bullet \overline{N}_{j} = \nabla \bullet \left(-D_{ej,m} \nabla C_{j}\right) = \left(\sum_{i=1}^{nr} \upsilon_{ij} r_{i}\right) S_{g} \rho_{g} + Homogeneous pellet$$
Energy Balance

$$\nabla \bullet \overline{q} = \nabla \bullet \left(-k_{eff} \nabla T\right) = -\left(\sum_{i=1}^{nr} - (\Delta H_{rxn,i}) r_{i}\right) S_{g} \rho_{g}$$
- Homogeneous pellet
- Effective transport
coefficients

Note: Other flux and constitutive relations can be used for more realistic solutions

Case Study: SO₂ Oxidation Catalysts

Key Features

• Alkali metal-promoted (K or Cs) vanadium pentoxide (V₂O₅) on silica support

Key Selection Factors

- Pressure drop
- Dust capacity
- Ignition & activity

- Strength of SO₂ feed gas
- Plant configuration
 (Single vs double absorption)

Reference: "VK Series - Sulphuric Acid Catalysts for Today and for the Future," Product Brochure, Haldor Topsoe, Inc.

Typical Process Configurations

Source: "VK Series - Sulphuric Acid Catalysts for Today and for the Future," Haldor Topsoe, Inc.

Equilibrium Conversion for SO₂ Oxidation

Reaction Kinetics for SO₂ Oxidation

$$-r_{so2} = \frac{k_{1} p_{O2} p_{sO2} \left(1 - \frac{p_{sO3}}{p_{sO2} \sqrt{p_{O2}} K_{P}}\right)}{22.414 \left(1 + K_{2} p_{sO2} + K_{3} p_{sO3}\right)^{2}} \frac{kmol SO_{2}}{kg \ catalyst - hr}$$

1

Hougen-Watson Mechanism; RLS = Adsorbed $O_2 \& SO_2$; $T = 420 - 590^{\circ}C$

Kinetic Parameters Molten Salt Chemistry $k_1 = \exp(12.160 - 5473 / T)$ $K_2SO_4 + SO_3 \longrightarrow K_2S_2O_7$ $K_2 = \exp(-9.953 - 8619 / T)$ $K_2S_2O_7 + V_2O_5 \longrightarrow K_wV_xS_vO_z$ $K_3 = \exp(-71.745 - 52596 / T)$ SO₂ + 2 V⁵⁺ + \rightarrow SO₃ + 2 V⁴⁺ **O**²⁻ $K_{P} = \exp(11,300 / T - 10.68)$ → O²⁻ + 2 V⁵⁺ 1/2 O₂ + 2 V⁴⁺ Units: T [K] p [atm]

Reaction Rate vs SO₂ Conversion

Constants

Name		Expression			Value	De	scription		
p_503_0	P*y_503_0	Deutiel and ease		1	0				
p_N2_0	P*y_N2_0	Partial pressur	es		0.814				
0	p_SO2_0/Rg/T0_K*10^6	& concentrations			1.37221				
:_02_0	p_02_0/Rg/T0_K*10^6				1.899983				
0	p_SO3_0/Rg/T0_K*10^6	at pellet surfac	e		0				
:_N2_0	p_N2_0/Rg/T0_K*10^6	conditions			14.320242				
۶g	22400/273.15				82.006224	atn	n cc/m		
_eff	7e-4	Effective conductivity			7e-4	cal	/(cm-s-C)		
<_eff_comsol	k_eff*0.239*10^2				0.01673	W/	(m-K)		
го_с	420				420	Celsius			
го_к	T0_C+273.15				693.15	К			
d	exp(12.16-5473/T0_K)	Reaction rate			71.10532				
<2	exp(-9.953+8619/T0_K)				11.959644				
(3	exp(-71.745+52596/T0_K)	constants	constants 6		62.46958				
<p< td=""><td>exp(11300/T0_K-10.68)</td><td></td><td></td><td></td><td>276.548898</td><td></td><td></td><td></td></p<>	exp(11300/T0_K-10.68)				276.548898				
r_502_f_max	k1*p_02_0*p_502_0/(22.414	I*(1+K2*p_502_0+K3*p_503	3_0)^2	2)	0.007153		May	imum	
_502_b_max	k1/Kp*p_O2_0^0.5*p_5O3_0	/(22.414*(1+K2*p_5O2_0+K	3*p_S	03_0)^2)	0		IVIAN		
_SO2_max	r_SO2_f_max-r_SO2_b_max				0.007153		reac	ction rate	
_502_coms	r_502_max*10^6/3600*rho_	cat			2.642731		L		
dhr_410	-98963.2				-98963.2	at	410c J		
dhr_618	-98958.9	Maximum heat	t 🗆		-98958.9	at	618c J		
dhr_avg	(dhr_410+dhr_618)/2	generation rate			-98961.05 J/mol				
Q_rxn_max	dhr_avg*r_SO2_comsol_max				-2.615274e5	J/n	1^3-s		
								-	

Global Expressions

Name		٦		Unit 🛛	Description		
o_502	c_SO2*Rg*T0_K/10^6	Partial pressures		mo	l/m ³		
0_02	c_02*Rg*T0_K/10^6	at pellet surface		mo	l/m ³		
o_503	c_SO3*Rg*T0_K/10^6	to ponot oundoo		mo	l/m ³		
5_N2	c_N2*Rg*T0_K/10^6	temperature		mo	Úm ³		
R_502_f	k1*p_02*p_502/(22.414*(1+K2*	*p_502+K3*p_503)^2)		eacti	on	rato	
R_502_b	k1/Kp*p_02^0.5*p_503/(22.414	*(1+K2*p_502+K3*p_503)^2)					
R_SO2_comsol	R_SO2*10^6/3600*rho_cat			t pelle	et s	urrace	
Q_rxn	dhr_avg*R_SO2_comsol	Heat generation					
R_502	R_S02_f-R_S02_b						
o_SO2_noniso	c_SO2*Rg*T/10^6	Dertial processor		K∍r	nol/m ³¹		
o_02_noniso	c_02*Rg*T/10^6	Failiai pressures	Partial pressures				
o_SO3_noniso	c_SO3*Rg*T/10^6	at local temperature K-mol/m ³					
o_N2_noniso	c_N2*Rg*T/10^6			K (r	nol/m ³		
_so2_noniso_f	k1*p_02_noniso*p_502_noniso/((22,414*(1+K2*p_502_noniso+K3*p_9	503_noi	nis 1			
_so2_noniso_b	k1/Kp*p_02_noniso^0.5*p_503	k1/Kp*p_02_noniso^0.5*p_503_noniso/(22.414*(1+K2*p_502_noniso+K3*p_50 Reaction rate					
_so2_noniso	r_so2_noniso_f-r_so2_noniso_b	r_so2_noniso_f-r_so2_noniso_b					
_so2_noniso_coms	iol r_so2_noniso*10^6/3600*rho_ca	it			u	ponor	<u>, 0</u> ,
•	1						
<u> </u>						>	

Subdomain Settings -Diffusion Model-

Subdomain Settings - Diffusi Equation ∇·(-D∇c_SO2) = R, c_SO2 =	C E ii	Calculated Using Wilke Equation for Diffusion in Gas Mixtures		
Subdomains Groups Subdomain selection	c_SO2 c_O2 c_S Species 1 Library material:	03 c_N2 Init f	Element Color	
	Quantity C D isotropic C D anisotropic R	Value/Expressi 1.08067E-05 1001 -R_502_comsol	ion Unit m ² /s m ² /s mol/(m ³ ·s	Description Diffusion coefficient Diffusion coefficient) Reaction rate
Group:		******	Reaction global ex	rate from pressions
		ОК	Cancel	Apply Help

Repeat for each Specie

Boundary Settings -Diffusion Model-

Boundary Settings - Diffusion	n (chdi)		•		
Equation c_502 = c_502 ₀		Specife pellet su account	d conc urface; for fin	entration Can als ite resis	n at the so tance
Boundaries Groups	c_502 c_02 c_503	c_N2 Color/Style			
Boundary selection	Boundary conditions-				
	Boundary condition:	Concentration	-		
	Quantity	Value/Expression	Unit	Description	
4	c_SO2 ₀	c_502_0	mol/m ³	Concentration	·
5	N ₀	0	mol/(m ² ·s)	Inward flux	
6	k _c	0	m/s	Mass transfer	coefficient
	сь	0	mol/m ³	Bulk concentra	ation
Group:			·		
Select by group					
Interior boundaries					
		ОК	Cancel	Apply	Help

- Repeat for each Specie
- Repeat for each Boundary

Subdomain Settings -Steady State Heat Conduction Model-

Sub	domain Settings - Heat T	ransfer by Conducti	on (ht)				
Equation $-\nabla \cdot (k \nabla T) = Q + h_{trans}(T_{ext}-T) + C_{trans}(T_{ambtrans}^4 - T^4), T = temperature$ Subdomains Groups Physics Init Element Color			Effective catalyst pellet conductivity taken from published literature				
 [2	Subdomain selection	-Thermal properties a	and heat sources/sinks	·	•		
	1	Library material:	•	Load			
		Quantity	Value/Expression	Unit	Description		
		 k (isotropic) 	k_eff_comsol	W/(m→K)	Thermal conductivity		
		C k (anisotropic)	400 0 0 400	W/(m+K)	Thermal conductivity		
		ρ	8700	kg/m ³	Density	Heat g	eneration
		C _p	385	J/(kg+K)	Heat capacity	due to	reaction
	_	Q	-Q_rxn	W/m ³	Heat source 🔺 🔭		
		h _{trans}	0	W/(m ³ ·K)	Convective heat transfer	r coefficient	
		T _{ext}	0	К	External temperature		
	Select by group	C _{trans}	0	W/(m ³ ·K ⁴)) User-defined constant		
	Active in this domain	T _{ambtrans}	0	к	Ambient temperature		
OK Cancel Apply Help							

Repeat for each Specie

Boundary Settings -Steady State Heat Conduction Model-

Equation T = T ₀ Boundaries Groups	Coefficients Color/5	n (ht) S pe ac tyle re	Specifed temperature at the pellet surface; Can also account for finite heat transfer resistance at pellet surface			
Boundary selection	Boundary sources ar Boundary condition: Quantity q ₀ h T _{inf} Const T _{amb} T ₀	Temperature Value/Expres 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	ssion Unit W/m ² W/(m ² ·K) K W/(m ² ·K ⁴) K K	Description Inward heat flux Heat transfer coefficient External temperature Problem-dependent constant Ambient temperature Temperature		
		0	K Cancel	Apply Help		

Repeat for each Boundary

Comsol Setup - Nonisothermal Slab

Conc. Profiles - Nonisothermal Slab

0.6

0.4

0.2

0

1

SO₂

2

3

4

5

7

6

8

x10⁻³

Slab Pellet Temperature Profiles

Comsol Setup -Nonisothermal Hollow Cylinder-

Conc Profiles - Isothermal Hollow Cylinder

Conc. Profiles - Nonisothermal Hollow Cylinder

Comsol Setup -Nonisothermal Solid Cylinder-

Conc. Profiles - Nonisothermal Solid Cylinder

Solid Cylinder Temperature Profiles

Comsol Setup -Nonisothermal Daisy-

Mesh Generation

Surface Concentration Plot for SO₂

Conc. Profiles - Nonisothermal Daisy

Daisy Pellet Temperature Profiles

Effectiveness Factor Comparison

	Effectiveness Factors							
T, °C	20 mm Hollow	12 mm Daisy	10 mm Hollow	6 mm Solid				
420	0.363	0.449	0.589	0.592				
475	0.387	0.498	0.684	0.679				
500	0.300	0.393	0.562	0.565				
590	0.146	0.193	0.283	0.302				

Summary

 COMSOL Multiphysics provides attractive approach for modeling impact of catalyst particle shape on catalyst effectiveness factors for SO₂ oxidation.

Suggested Areas for Improvement

- Need more detailed algorithm for rates forms with fractional orders since C = 0 for x<x* which gives errors
- Techniques for investigating presence of multiple solutions, which are present in many problems, would allow detailed parametric analysis and identification of stability regions.
- Provide user with more flexible choices, such as molar flux models (*e.g.*, Dusty-gas model), particle shape library, transport parameter library, etc.