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Background
Local Anesthetics (LA):
• Commonly employed procedure to minimize pain and

discomfort

• Act directly on voltage gated sodium channels and reversibly

block the conductance in neurons [1].

• Common local anesthetics include bupivacaine, lidocaine, and

ropivacaine.

Mesenchymal Stromal Cells (MSCs):
• MSCs are an attractive option for tissue engineering and

regenerative medicine applications because:

• Multi-lineage differentiation potential

• Immunomodulatory functions

• Generally non-immunogenic [3]

Effect of Local Anesthetics on MSCs:
• LAs affect the MSC:

• Proliferation capacity

• Differentiation potential

• Adherence phenotype

• Secretome

• Immunomodulatory function

• Viability

• In a potency and time dependent manner [4,5]

A cell therapy must be developed that can

avoid compromising the integrity and potency

of an MSC therapy and still deliver the

necessary level of comfort to the patient.

Bupivacaine-loaded Liposomes
• A bilayer of lipids surrounding bupivacaine

• Bupivacaine slowly leaks through the bilayer

• Slower rate than bolus dose [6]

Hydrogel-Liposome Construct
• Liposome slows down drug release but it is still too fast for

clinical use.

• Liposomes are encapsulated in alginate hydrogel to further slow

down the drug release.

Figure 1: Mechanism of Action for Local Anesthetics. Ionized LA blocks 
sodium from entering the cell. This inhibits action potentials from being 
propagated, which halts signal conductance. Figure  modified from [2]

Objectives
Create a LA delivery model that can enable co-administration of

LAs and MSCs without decreasing their anti-inflammatory or

regenerative properties.

To do this, we aim to:

• Design tunable hydrogel encapsulated liposome structure that

will allow for control of the degradation and drug release

profiles of LA

• Create a system that can release sufficient and sustainable LA

levels to minimize pain without harming therapeutic cell

functions

Hydrogel-Liposome SystemBupivacaine-Loaded Liposome

Figure 2: LA delivery model utilizing alginate encapsulated liposomes. 

Methods
Bupivacaine-loaded Liposomes:
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Figure 3: Experimental Setup for Liposome-Alginate Sustained Release Model

Results

Figure 4: Liposome Characterization. A) Liposome layer folds correctly with 
hydrophobic and hydrophilic components. B) Water packed liposome model. 
Molecular dynamics performed using  AMBER 14. 

Figure 5:  Fluorescent image of 
liposomes in alginate. The image is a 
representation of a z-section.  As can 
be seen, a relatively homogenous 
distribution of liposomes is contained 
within alginate. 

Figure6: CFD assessment of drug 
release from liposomal 
formulation. Figure demonstrates 
a CFD assessment of drug release 
from a liposomal formulation 
alone at 24 hours. 

%
 o

f 
Pa

re
n

t 
C

o
n

ce
n

tr
at

io
n

Time (Hr)

Figure 7: Control release of bupivacaine from liposome-hydrogel constructs. In
vitro release of bupivacaine determined using LCMS.

Figure 8: Diffusivity of Bupivacaine from Liposome-hydrogel Formulation.
Comparing in vitro bupivacaine release data to model output at various
diffusivity values.
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Figure 9: Simulated in vitro bupivacaine release profile over time. COMSOL
Model output comparing the transwell alginate-liposome formulation with
the transwell media-bolus concentration at different initial bupivacaine
concentrations. The alginate-liposome system decreased the release profile of
bupivacaine.
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Figure 10. In vitro MSC Viability. After 96 hours in culture there is a significant
protection of cell viability in the liposomal-alginate hydrogel construct
conditions. MSCs treated with 1mM bupivacaine. Bars represent fluorescence
intensities (FI) of reduced CellTiter-Blue reagent normalized by cell number.
The data are the mean ± SEM of n=6 independent observations (N=2
experiments). *Statistically different (p≤0.05). +Statistically different
(p≤0.0001).
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Discussion and Conclusions

• COMSOL Modeling determined that our formulation could 

enable long term release of lower concentrations of 

bupivacaine to MSCs. 

• Starting dose of 1mM yielded a cell apparent 

dose of 0.1mM, enabling for 90% cell viability 

[5].

• Diffusivity of bupivacaine from liposome-hydrogel system is 

8.5E-15mol/m3 . 

• Discrepancy in bolus jump could be due to 

simplicity of model, which does not take into 

account binding and interactions between the 

drug and alginate and lipids in the system.

• This formulation provides multi-day pain-mitigation and can be 

co-administered with MSC therapies

• The alginate-liposome formulation will be studied in 

conjunction with MSCs to determine the effect of the sustained 

release system has on the cells regarding functionaility.

• A cell uptake component will be added to the model to better 

simulate the in vivo experience. 
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