COMSOL CONFERENCE 2016 MUNICH

Tunnels, a new potential for sensible heat storage in rock: 3D numerical modelling of a reversible exchanger within tunnel

Chaima SOUSSI, Olivier FOUCHÉ, Gonzague BRACQ, Sophie MINEC

Email: soussichaima@gmail.com

Outline

Results and discussion

Introduction and context

Principle of this new technology

)a

3D Numerical modelling

* Physics

Equations

Coupled physical phenomena

* 3D Model

- Outer diameter of the tunnel =9.5 m
- Thickness of the concrete ring =40 cm
- Width of a ring = 1.8 m
- Inner pipe diameter 21mm.

* Mesh

- Defined by user
- Linear elements for pipes
- Tetrahedrons for concrete and rock

Initial / boundary conditions

- ➢Rock temperature T_{roche}
- Convective flow
- Inlet fluid temperature T_{in}
- Fluid flow rate
- Fluid outflow pressure
- Groundwater velocity

Results and discussion

Fluid parameters

A wide range of heat flux of 15 W / m to 40 W / m²

Heat extraction and hydraulic loss increase with fluid flow

```
Finding an equilibrium between the thermic and hydraulic problems
Fixed parameters
T<sub>in</sub> in winter: 4 ° C and flow rate: 0.1 I / s
```


Thermal properties of the rock

Energy exchanged increases with the thermal conductivity:

> Extracted \approx 2 MWh / year / ring Injected \approx 2.5 MWh / year / ring

- Stored energy decreases with temperature
- Extracted energy increases with temperature
- Decrease of the difference

Non activated tunnel

Warming of the rock

From march to mid-september, the heat diffuses from the tunnel to the rock and in the opposite direction in the rest of the year

Quantity of heat stored > extracted

Comparison between thermal activated and non-activated tunnel

***** The temperature distribution around the tunnel

* The temperature profile in the rock

Radial shape around non-activated tunnel

Snail shape around activated tunnel

The exchanger system reduces thermal disturbance of the rock.

Effect of groundwater flow

***** Behavior of the water table around the tunnel

- Superposition of two geological layers
- Groundwater level is 2m below the interface

***** Effect of the groundwater on the thermal equilibrium of the rock

The velocity of the groundwater has a great influence on the thermal equilibrium of rock and thus the heat exchange

Response to heating needs, case of new offices

Heating needs

Annual needs: 140 MWh

Scenario adopted

Heating production 8.5 MWh/ year/ ring \cong 4.7 MWh/ year/ ml

30 meters linear of the tunnel = 17 rings must be activated

Conclusion

- Ecological benefits: reducing consumption of fossil energy and thermal disturbances of the rock,
- Stable and sustainable system,
- In the case of absence of groundwater flow, the fluid properties have more remarkable effect than that of the thermal properties of the rock,
- Velocity of the groundwater has a great influence on the behavior of the system: rapid flow allows the thermal regeneration but not the heat storage in the rock.

Thanks for your attention

For more information:

Poster will be presented

today at 16:00 - 18:00

