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1. Introduction: about molten salt electrorefining
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1. Introduction: about molten salt electrorefining
• Modeling of electrorefining processes: what for?

- Prediction of the local reaction rates at the electrodes:

Presence of preferential active zones? of undesirable side reactions?

- Prediction of the temperature throughout the reactor/in the electrolyte,

as a function of the Current/Voltage specifications

 Optimizing: cell design, operating conditions (current, voltage), electrolyte composition…



1. Introduction: about molten salt electrorefining
• Modeling of electrorefining processes: physical interactions
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2. Electrical model implementations
• The 3 current approaches
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2. Electrical model implementations
• The primary current distribution
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2. Electrical model implementations
• The secondary current distribution

Anode Cathode
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2. Electrical model implementations
• Model geometry
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3. Results

Current model
Decomposition

voltage (V)
Ohmic drops (V)

Activation 

overpotentials h (V)

Overall cell voltage 

(V)

Primary distribution 1.7 6.3 0 8

Secondary distribution 1.7 6.5
1.5 (anodic) 

+ 0.6 (cathodic)
10.3

• Primary vs. secondary current density



• Effect of the current prescribed (secondary model)

3. Results
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• 2 simple current models for describing electro-refining cells: primary or secondary approaches

• Primary current: only Ohmic drops

Secondary current: activation overpotentials of reaction taken into account

• More uniform reaction rate distribution obtained with the secondary approach

• Increase of the total current applied to the cell  heterogeneization of the current distribution

• Secondary model more appropriate for simulating electro-refining processes.

 simple tool for optimizing the electrode design, the applied current…  

4. Conclusion
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