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Abstract:  

The recently discovered Pockels effect in strained 

silicon has made silicon a promising candidate 

material for optical modulators and switches. In 

this paper we investigate the electro-optic effect 

induced by applied strain gradient in silicon 

optical waveguides. We also propose a model that 

simplifies the description of the electro-optic 

effect in strained silicon providing a tool for 

design and optimization of optical devices. 
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1. Introduction 
The electro-optic effect consists in the change of 

the refractive index induced by an electric field 

that varies slowly compared with the frequency of 

an optical signal. In the particular case of the 

Pockels effect, also called linear electro-optic 

effect, the change in the refractive index is 

proportional to the applied electric field, 

providing an efficient physical mechanism for 

optical modulation. However, a peculiarity of the 

Pockels effect is that it arises only in crystalline 

solids lacking of inversion symmetry. As a 

consequence, for centrosymmetric crystals (like 

silicon) the Pockels effect can be observed only 

when the inversion symmetry is broken, e.g., by 

the presence of significant surface/interface 

effects or by an inhomogeneous mechanical 

stress. In this work, we propose a model that links 

the electro-optic effect to the applied strain (in 

fact to the strain gradient). This model essentially 

relies on symmetry arguments and can be seen as 

a coherent formalization of some intuitive ideas 

present in the literature and relating the effective 

susceptibility to the strain gradient. 

2. Theory 
2.1 Polarization vector and Pockels effect 

The quadratic nonlinear susceptibility is 

conventionally defined, for a local and causal 

medium, by the following relation between the 

(quadratic component of the) polarization vector 

𝑃𝑖
(2)(𝑡) and the electric field 𝐸(𝑡): 

𝑃𝑖
(2)(𝑡) = 𝜺𝟎    ∬   𝝌𝒊𝒋𝒌

(𝟐)∞

𝟎
(𝝉𝟏, 𝝉𝟐 )𝑬𝒋(𝒕 − 𝝉𝟏)𝑬𝒌(𝒕 − 𝝉𝟐)𝒅𝝉𝟏𝒅𝝉𝟐    (1) 

 

where 𝜀0   is the free-space dielectric permittivity 

and 𝜒𝑖𝑗𝑘
(2)

 is the susceptibility tensor. In the 

frequency domain the same formula can be 

rewritten in the following way: 
𝑷𝒊

(𝟐)(𝝎𝟏, 𝝎𝟐) = 𝜺𝟎   𝜒𝑖𝑗𝑘
(2)

 (𝝎𝟏 + 𝝎𝟐, 𝝎𝟏, 𝝎𝟐 )𝑬𝒋(𝜔1)𝑬𝒌(𝜔2) (2). 

The Pockels effect consists in the variation of the 

index of refraction at frequency ω when a static 

electric field is applied. In the case of Pockels 

effect, the definition of polarization vector 

becomes: 

𝑷𝒊
(𝟐)(𝝎) = 𝟐 𝜺𝟎   𝜒𝑖𝑗𝑘

(2)
 (𝝎; 𝝎, 𝟎)𝑬𝒋(𝜔)𝑬𝒌(0)   (3) 

where the factor 2 derives from inversion 

symmetry on the 𝜒𝑖𝑗𝑘
(2)

 tensor. 

2.2 The strain-induced Pockels effect 

In the linear theory of elasticity, a small 

deformation x → x + u(x) is described by the 

symmetric strain tensor ε, defined by  

ε𝑖𝑗 =
𝝏𝒖𝒊

𝝏𝒙𝒋
+

𝝏𝒖𝒋

𝝏𝒙𝒊
   (4) 

where u(x) represents the displacement of a 

material point. In order to determine the relation 

between χ(2) and ε, the following strategy has been 

identified: the most general expression 

compatible with the symmetries of the problem is 

considered, then the various possible terms are 

classified according to their “strength” retaining 

only the most relevant ones. The final relation will 

depend on a number of unknown constants, which 

have to be identified by comparing with 

experimental data. 

As a starting point we assume that χ(2) is a local 

functional of ε, i.e. that χ(2) at point x depends only 

on the values of ε and its derivatives at x. We then 

assume that this dependence is analytic and we 
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develop everything in Taylor series, thus arriving 

to the following expression: 

𝜒𝑖𝑗𝑘
(2)

=
𝜕𝜒𝑖𝑗𝑘

(2)

𝜕𝜁𝛼𝛽𝛾
 |

𝜀=0

𝜁𝛼𝛽𝛾   (5) 

where 𝜁𝛼𝛽𝛾 = 𝜕𝜀𝛼𝛽/𝜕𝑥𝛾   is the strain gradient 

tensor and, as a consequence, in a more compact 

notation, we can write that: 

𝜒𝑖𝑗𝑘
(2)(𝑥, 𝜔1 + 𝜔2; 𝜔1, 𝜔2) = 

𝑇𝑖𝑗𝑘𝛼𝛽𝛾( 𝜔1 + 𝜔2; 𝜔1, 𝜔2)𝜁𝛼𝛽𝛾(𝑥)    (6) 

The tensor T inherits some symmetries from ε: it 

is symmetric for α ↔ β and, as far as the Pockels 

effect is concerned, for i ↔ j if a lossless medium 

is considered [5,6]. It is worth noting that only 324 

of the 36 = 729 components of T are linearly 

independent. Since T is an invariant tensor for the 

lattice symmetry, this number can be further 

largely reduced. In the case of the lattice 

octahedral symmetry typical of the silicon crystal, 

we proved that the number of independent 

components is in fact only 15.  

In the most common devices designed to give an 

estimation of the Pockels effect (see e.g. Fig 1), 

the static electric field is directed along the y 

direction; as a consequence, the final expression 

for the effective dielectric susceptibility is given 

by: 

𝜒𝑦
𝑒𝑓𝑓(𝜔) = 𝑐𝑖𝑜𝑖(𝜔)      (7) 

where the coefficients ci (i = 1,...,15) are the 

independent entries of the tensor T and the terms 

𝑜𝑖  are linear combinations of the weighted strain 

gradients 𝜁𝛼𝛽𝛾
𝑖𝑗 (𝜔) that are defined as 

𝜁𝛼𝛽𝛾
𝑖𝑗 (𝜔) =

𝜀0 𝑐 𝑛𝑒𝑓𝑓

𝑁
∫ 𝐸𝑖

∗ (𝑥)𝜁𝛼𝛽𝛾(𝑥)𝐸𝑗(𝑥)𝑑𝐴  (8) 

where 𝜀0   is the free-space dielectric permittivity, 

c is the speed of light in the vacuum, 𝐸𝑖(𝑥) and 

𝐸𝑗(𝑥) are the components of the optical field and 

𝑛𝑒𝑓𝑓  is the effective index of the mode. In order 

to clarify the role played by the electromagnetic 

field in the estimation of the effective index, the 

analytical expression of the normalization factor 

N is 

𝑁 =
1

2
∫(𝑬𝑥𝑯∗ + 𝑬∗𝑥𝑯) ∙ 𝑖𝑧  𝑑𝐴   (9),    

where E and H are the components of electric and 

magnetic fields and A is the waveguide cross 

section. The linear combinations of the weighted 

strain gradients 𝜁𝛼𝛽𝛾
𝑖𝑗 (𝜔) will be called overlap 

function and reported with the simpler notation of 

𝑜𝑖  that will be clarified in the appendix. 

 

2. Experimental setup  
The strain induced electro-optic effect of silicon 

has been measured by exploiting a fully integrated 

Mach Zehnder Interferometer in a push-pull 

configuration with a difference length. The strain 

is applied by covering the silicon waveguide with 

a straining silicon nitride (Si3N4) cladding layer 

and the effective index variation is measured from 

the spectral wavelength shift at the MZI-output as 

a function of the applied voltage. For the electro-

optic characterization, a variable electrostatic 

field is applied to the MZI arms by changing the 

voltage from -30 V to 30 V. 
The waveguide cross-section used in [1,2] is 

schematically shown in Fig. 1. A silicon rib 

waveguide was manufactured on a silicon-on-

insulator (SOI) substrate with a 220 nm thick 

(100)-oriented top silicon layer over a 3 µm thick 

buried oxide. Silicon waveguides are fabricated 

by an etching process that leaves a slab thickness 

of 45 nm. A 350 nm thick Si3N4 layer is deposited 

using remote plasma enhanced chemical vapor 

deposition and after the annealing process, a 

protective SiO2 cladding layer is deposited on the 

top (850 nm thick). 

 
 

Figure 1. Slab waveguide cross-section described in 

[1]. 
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3. Use of COMSOL Multiphysics 
In order to investigate the validity of our model, 

we need to evaluate the strain gradient for the 

structures described in the previous section. Since 

silicon elastic properties significantly depend on 

the orientation of the crystalline structure, they 

have been taken into account in the mechanical 

simulation. To describe the deformation of 

silicon, one possibility could be to make use of the 

Hooke’s law, i.e. the linear relation between strain 

and stress, which for materials with cubic 

symmetry involves only three independent 

components. A more convenient description, that 

avoids tensorial transformation, is however the 

one that makes use of the orthotropic model. A 

material is said to be orthotropic when it has at 

least two orthogonal planes of symmetry. Its 

elasticity can be described by a matrix that takes 

into account the fundamental elasticity quantities 

in the axes of interest: the Young’s module (Y), 

the Poisson’s ratio (ν) and the shear modulus (G). 

The most common use of orthotropic expressions 

for silicon is to provide the elasticity values in the 

frame of a standard (100)-silicon wafer. When 

z=[1-10], x=[110] and y=[001] like in the device 

investigated in [1] the elasticity moduli are [3] : 
𝑌𝑥 = 169  GPa,   𝑌𝑦 = 130 GPa  𝑌𝑧 = 𝑌𝑥 

𝑣𝑥𝑦 = 0.36,     𝑣𝑦𝑧 = 0.28,   𝑣𝑥𝑧 = 0.064 

𝐺𝑥𝑦 = 79.6  GPa,   𝐺𝑥𝑧 = 50.9 GPa  𝐺𝑦𝑧 = 𝐺𝑥𝑧 (10). 

The deformation of the silicon waveguides has 

been computed by using COMSOL multiphysics 

tools. Assuming 1 GPa compressive stress as the 

initial condition for the silicon nitride layer, the 

elastic strain has been computed for the structure 

in Fig 1. For the silicon waveguide and the buried 

silicon we used the values of the elastic modulus, 

the shear modulus and the Young’s modulus in 

[3]. Since for the solid analysis a 2D model has 

been considered, the components 𝜀𝑥𝑧 and 𝜀𝑦𝑧 of 

the strain identically vanish. For the same reason, 

the derivative of the strain coefficient with respect 

to z are assumed to be zero (see Fig. 2). 

 
Figure 2. Simulated strain tensor components for the 

waveguide cross section in in ref .[1] 
 

The results of the electromagnetic mode analysis, 

performed using COMSOL are shown in Fig. 3 

for the device described in Fig. 1. The waveguides 

show a single mode behavior but 𝐸𝑧 and 𝐸𝑦 

components are not negligible compared to 𝐸𝑥 

component and thus the mode is clearly not purely 

transverse electric. The high value of 𝐸𝑧 is due to 

the high index step of the waveguide. 

 

 
Figure 3. Electromagnetic fields components in ref. [1]  

 

Combining the results of the electromagnetic 

mode analysis with the solid mechanics results, 

the overlap integrals have been computed for the 

structure in Fig. 1. Results are shown in Fig. 4 and 

their analytic value are reported in the appendix. 

Note that Fig. 4 only reports the largest overlap 

factors; the others are orders of magnitude smaller 

and then not significant for design optimization. 

Having computed these overlap functions for the 

selected experimental setup, the 𝑐𝑖  coefficients of 

eq. 7 can be estimated by fitting the experimental 

data, providing, in this way a big breakthrough in 

silicon photonic for the optimization of optical 

devices.   
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Figure 4. Overlap functions in ref [1,4]. 

 

8. Conclusions 
In this paper we present an investigation through 

COMSOL multyphysics of a novel model that 

describes the strain-induced dielectric 

susceptibility in centro-symmetric crystals. We 

underlined that the combination of optical modes 

and mechanical stress analysis is required in order 

to have an accurate description of second order-

dielectric susceptibility. The main result of our 

analysis consists in a simple relation between the 

second order dielectric susceptibility and linear 

combinations of weighted strain gradient tensor. 

The future presence of accurate experimental data 

will give us the possibility of evaluating a few 

parameters that will allow design and 

optimization of electro-optic modulators. 
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11. Appendix 

 

The overlap functions in the main text are 

computed with respect to the coordinate 

frame shown in Fig. 1 and their explicit form 

is reported in the following:  

     𝑜1 =  𝜁𝑦𝑦𝑦
𝑦𝑦

 ,      𝑜2 =  𝜁𝑦𝑦𝑦
𝑧𝑧 +  𝜁𝑦𝑦𝑦

𝑥𝑥 , 

      𝑜3 = 𝑅𝑒 { 𝜁𝑦𝑦𝑦
𝑧𝑧 +  𝜁𝑦𝑦𝑦

𝑥𝑥 }, 

      𝑜4 =  𝜁𝑥𝑥𝑦
𝑦𝑦

+  𝜁𝑧𝑧𝑦
𝑥𝑥 , 

𝑜5 =
1

2
{ 𝜁𝑥𝑥𝑦

𝑥𝑥 +  𝜁𝑧𝑧𝑦
𝑧𝑧 +  𝜁𝑥𝑥𝑦

𝑧𝑧 +  𝜁𝑧𝑧𝑦
𝑥𝑥 }, 

       𝑜6 = 𝑜5,                  𝑜7 = 𝑜3 

      𝑜8 = 2𝑅𝑒{ 𝜁𝑦𝑦𝑥
𝑥𝑦

}, 

𝑜9 =  𝜁𝑥𝑥𝑦
𝑥𝑥 +  𝜁𝑧𝑧𝑦

𝑧𝑧 −  𝜁𝑥𝑥𝑦
𝑧𝑧 −  𝜁𝑧𝑧𝑦

𝑥𝑥  

          𝑜10 = 2{ 𝜁𝑥𝑦𝑥
𝑥𝑥 −  𝜁𝑥𝑦𝑥

𝑧𝑧 }, 

          𝑜11 =  𝜁𝑥𝑦𝑥
𝑥𝑥 −  𝜁𝑥𝑦𝑥

𝑧𝑧 ,  𝑜11 = 𝑜12 

          𝑜13 = 2 𝜁𝑥𝑦𝑥
𝑦𝑦

 

           𝑜14 = 2𝑅𝑒 { 𝜁𝑥𝑥𝑥
𝑦𝑥

−  𝜁𝑧𝑧𝑥
𝑦𝑥

}, 

𝑜15 = 4𝑅𝑒{ 𝜁𝑥𝑦𝑦
𝑦𝑥

}  (11). 
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