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1. Swimming style

1.1 Some of traditional categories used to describe patterns of body undulation in fishes:

Anguilliform Carangiform

0.

Subcarangiform Thunniform



1.2 Patterns of 2D body undulation are very similar among fishes:

Anguilliform Subcarangiform Carangiform Thunniform

W.S. Hoar and D.J. Randall (Eds.)-Locomotion-Elsevier, Academic Press (1979), Fish Physiology Volume VII



1.3 The swimming engine of several types of fishes is composed by lateral muscle fibers,
called myotomes. The complex architecture of myotomes is related to the
movements of fish.

J. J. Videler. Fish Swimming, Springer-Science+Business Media, B.V., 1993.



1.4 Fish have been induced to swim against a water current at various speeds.
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J. J. Videler. Fish Swimming, Springer-Science+Business Media, B.V., 1993.



1.5 Carangiform swimming style shows a traveling wave along the body;
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J. J. Videler. Fish Swimming, Springer-Science+Business Media, B.V., 1993.



1.6 The muscles action is modeled in Comsol assigning a distortion field to the solid
bodyl0 define a swimming style, we first assign the functionn(x,¢) and then derive the

muscle driven distortions E¢,
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1.7 Traveling wave has velocity: ¢, = fA
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2. Fish swimming
Real time; fluid speed and muscles contraction.

f=4Hz; A=02m;t;=0.2s.

Slow motion 4x




Slow motion 4x; Vortex field and muscles contraction.




2.1 \ortices are released at the end of every stroke.




2.2 \elocity realized at fish center of mass shows good accordance with empirical
expected value, provided the fact that our simulations are 2D.
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The contribution to the overall speed (red) comes essentially from the horizontal part.



2.3 Lift and drag forces are calculated integrating fluid stress on fish contour. There is
great similarity between tail velocity components and lift and drag forces.
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we have great oscillations for lift force and minor oscillations for drag force.



2.4 Animal motions are influenced by a relation between Reynolds number Re and
transverse Reynolds number Sw .
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Gazzola, M., Argentina, M., & Mahadevan, L. (2014). Scaling macroscopic aquatic locomotion. Nature Physics. (2014)



3. Comsol settings

to track the long swimming path we aim at simulating.

3.1 We need both moving mesh to solve the FSI for short time intervals, and re-meshing
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