Fluid Motion Between Rotating Concentric Cylinders **Using COMSOL Multiphysics®** COMSOL CONFERENCE

K. Barman, S. Mothupally, A. Sonejee and P. L. Mills

Department of Chemical and Natural Gas Engineering Texas A&M University - Kingsville, Kingsville, TX, USA

▲ 1.18×10⁵

×10⁵

Introduction

Flow in annular regions occur in many practical applications, such as:

- Production of oil and gases
- Centrifugal separation process

Understanding the flow behavior in

- Fluid viscometers
- Electrochemical cells

Meshed Geometry

Results

Fluid Pressure Profiles ▲ 1.02×10⁵ Ω=555 rpm, t= 5 s ×10⁵

Tribology

2015 BOSTON

annular regions whose outer wall is stationary while inner wall rotates is important for interpretation of data & system modeling.

Figure 1. Rotating Concentric Cylinder.

0.02 y -0.02 0.02

Figure 2. Transparent Geometry of Concentric Rotating Cylinder.

Develop solutions to the fluid momentum transport equations for

Objectives

annular laminar flows of a Newtonian fluid in a 3-D control volume where the outer wall is stationary and the inner wall is rotating with an angular velocity Ω .

Model Equations

1-D Equations

$\frac{\partial(\nu_{\theta})}{\partial(\nu_{\theta})} = 0$ $\partial \theta$ $-\rho \frac{\nu_{\theta}^2}{r} = -\frac{\partial p}{\partial r}$ $\left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial (r v_{\theta})}{\partial r}\right)\right] = 0$

3-D Equations $\rho \frac{\partial \nu}{\partial t} + \rho(\nu, \nabla)\nu = \nabla [-p + \mu (\nabla \nu + (\nabla \nu)^T)] + F$ ρ . $\nabla(u) = 0$ Here $v_{\theta} = v_{\theta}(r)$ for 1-D and $v_{\theta} = [v_{\theta}, v_r, v_z]$ for 3-D. the parameters varied include Ω , μ , $-\frac{\partial p}{\partial z} - \rho g_z = 0$ and R_i.

<u>COMSOL CFD Module</u>

File 🔻	Home	Definitions	Geometry	Materials	Physics	Mesh	Study	Results							
А	~%≊Mo ● Rec	odel Data Access cord a New Metł	nod	⊗		i Parameter = Variables ·	s 🚺	🔁 Import	*	1		=	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		E

Conclusions

- The 3-D model captures the variation of velocity in the entry and exit regions, which is not the case for the 1-D model.
 - The pressure gradient increases with increasing Ω .
 - A foundation has been established for extension to non-Newtonian fluids, e.g. drilling muds and other fluids.

References

- 1. R. B. Bird and C. F. Curtiss. Tangential Newtonian flow in annuli-I. Chem. Eng. Sci. (1959)11, pp.108-113.
- 2. R. B. Bird *et al.*, Transport Phenomena, 2nd Edn., Wiley, New York (2006)

Excerpt from the Proceedings of the 2015 COMSOL Conference in Boston