Fluid Motion Between Rotating Concentric Cylinders

K. Barman, S. Mothupally, A. Sonejee and P. L. Mills Department of Chemical and Natural Gas Engineering
Texas A\&M University - Kingsville, Kingsville, TX, USA

Introduction

Flow in annular regions occur in many practical applications, such as:

- Production of oil and gases
- Centrifugal separation process
- Fluid viscometers
- Electrochemical cells
- Tribology

Understanding the flow behavior in
 annular regions whose outer wall is stationary while inner wall rotates is important for interpretation of data \& system modeling.

Figure 1. Rotating Concentric Cylinder.

Figure 2. Transparent Geometry of Concentric Rotating Cylinder.

Objectives

Develop solutions to the fluid momentum transport equations for annular laminar flows of a Newtonian fluid in a 3-D control volume where the outer wall is stationary and the inner wall is rotating with an angular velocity Ω.

Model Equations

1-D Equations

$\frac{\partial\left(v_{\theta}\right)}{\partial \theta}=0$
$-\rho \frac{v_{\theta}^{2}}{r}=-\frac{\partial p}{\partial r}$
$\left[\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial\left(r v_{\theta}\right)}{\partial r}\right)\right]=0$
$-\frac{\partial p}{\partial z}-\rho g_{z}=0$

3-D Equations

$\rho \frac{\partial v}{\partial t}+\rho(v . \nabla) v=\nabla\left[-p+\mu\left(\nabla v+(\nabla v)^{T}\right)\right]+F$
$\rho . \nabla(u)=0$
Here $v_{\theta}=v_{\theta}(r)$ for 1-D and $v_{\theta}=\left[v_{\theta}, v_{r}, v_{z}\right]$ for 3-D. the parameters varied include Ω, μ, and R_{i}.

COMSOL CFD Module

Conclusions

- The 3-D model captures the variation of velocity in the entry and exit regions, which is not the case for the 1-D model.
- The pressure gradient increases with increasing Ω.
- A foundation has been established for extension to non-Newtonian fluids, e.g. drilling muds and other fluids.

References

1. R. B. Bird and C. F. Curtiss. Tangential Newtonian flow in annuli-I. Chem. Eng. Sci. (1959)11, pp.108-113.
2. R. B. Bird et al., Transport Phenomena, $2^{\text {nd }}$ Edn., Wiley, New York (2006)
