

Plasmonic Waveguide Analysis

User Presentations, - RF, Microwave and Plasma

Sergei Yushanov, Jeffrey Crompton, and Kyle Koppenhoefer

8 October 2015

Objective

- Provide comparison of numerical and analytic solutions for a plasmonic waveguide
- Extend solution method to surface plasmon coplanar waveguide

What is a Surface Plasmon?

- Electromagnetic excitations that propagate at the interface between a dielectric and a conductor
- Evanescently confined in the perpendicular direction to the propagation
- Arise by coupling of the electromagnetic field to oscillations of the conductor's electron plasma
- Everyday example stained glass

Plasmonic Waveguide Geometry

Only TM plasmonic modes will be considered

Dielectric-metal dielectric (DMD) and metaldielectric-metal (MDM)

Two-dimensional model

Physics

Maxwell's Wave Equation:

$$\nabla \times \frac{1}{\mu_r} (\nabla \times \mathbf{E}) - k_0^2 \bigg(\varepsilon_r - \frac{j\sigma}{\omega \varepsilon_0} \bigg) \mathbf{E} = 0$$

Electromagnetic Waves, Frequency Domain (emw) physics interface is used to solve governing equation

Electric field components are solved for "*Inplane vector*".

Physics – Boundary Conditions

Wave excitation = "On" Launches wave Wave excitation = "Off" Maintains mode of launched wave in x -dir

Material Properties – Dielectric Constants

Configuration	Substrate,	Film,	Cladding,
	${\cal E}_{s}$	${\cal E}_{f}$	${\mathcal E}_c$
DMD	1.7	-4	3.5
MDM	-1.6	2.2	-4

Solution Method

- Two boundary mode analysis steps
 - Eigenvalue solution for the fields and propagation constants at the boundaries
- Frequency domain step

Comparison with Analytic Solution

DMD waveguide: ϵ_s =1.7, ϵ_f =-4, ϵ_c =3.5

Comparison with Analytic Solution

MDM waveguide: ϵ_{s} =-1.5, ϵ_{f} =2.2, ϵ_{c} =-4

Electric field distribution - DMD waveguide

100

50

0

-50

ka =0.1 freq =9.5427E12 Surface: Electric field, x component (V/m)

ka=0.7 freq =6.6799E13 Surface: Electric field, x component (V/m) 200 150 100 50 0 ε_c -50 -100 -150 -100 -200 у 7 х

f = 66.8THz

у 7 х

© AltaSim Technologies, LLC. All rights reserved.

f = 9.54THz

Coplanar Waveguide Problem

Silver

Drude model dielectric function

w = g = 50nmh = 100nm $\lambda_0 = 1500nm$

Electric Field – Longitudinal Component

Electric Field – Longitudinal Component

Summary

- Plasmonic layered waveguide (DMD and MDM) analyzed
- Comparison with analytical solution verifies methodology
- Technique extended to surface plasmon coplanar waveguide

