

3D Simulation of the Laser Interstitial Thermal Therapy in Treatment (LITT) of Brain Tumors

Mhamed Nour*, Ahmed Lakhssassi*, Emmanuel Kengne*, Mohammed Bougataya*

* LIMA - Laboratoire d'Ingénierie des Microsystèmes Avancés Université du Québec en Outaouais, Québec, Canada

Agenda

- Simulating with COMSOL Multiphysics®
- LITT: Laser Interstitial Thermal in Treatment with a heat transfer :

Geometrical description of the model.

Heat distribution.

Mesh.

Thermal damage.

- Live Demo: LITT, Apps.
- Q&A Session .

Introduction

- restriction of the number of probes that a patient can tolerate.
- mathematical model simulation is more effective to help doctors in planning their thermal treatment doses.
- maximize therapeutic effects while minimizing side effects.

Material and methods

 The Brain tissue is modeled as a Cylinder of radius r_mat-inner and height thickness_inner, 3D, Bioheat Transfer (ht), Time dependent of range (0,0.1,10) seconds, heated by a 0.25 W laser.

Laser procedure

- The laser beam is modeled as a heat source in the plane with Gaussian profile gp1
- The waveform function wv1 is a Triangle with Angular frequency and Phase equal 0 and the Amplitude equal 1.

у. <mark>Z</mark> _х

Modeling in COMSOL Multiphysics

Heat distribution

$$\rho C_{\rho} \frac{\partial T}{\partial t} + \rho C_{\rho} \mathbf{u} \cdot \nabla T + \nabla \cdot \mathbf{q} = Q + Q_{\text{bio}}$$

$$Q_{\text{bio}} = \rho_{\text{b}} C_{\text{b}} \omega_{\text{b}} (T_{\text{b}} - T) + Q_{\text{met}}$$

Material properties needed for analysis, and definition

Name	Expression	Value	Description
r_mat_inner	1[in]	0.0254 m	material inner radius
thickness_inner	2750[um]	0.00275 m	mat inner tickness
r_spot	2.5[mm]	0.0025 m	Radius of laser spot size
p_laser	0.25[W]	0.25 W	Laser power
period	10[s]	10 s	Time of laser to move back and forth
emissivity	0.8	0.8	surface emissivity of mat1
Temp	293.15[K]	293.15 K	Initial Temperature
rho_blood	1035[kg/(m*m*m)]	1035 kg/m³	Density Blood
omega_blood	0.866[l/s]	8.66E-4 m³/s	Blood Perfusion Rate
cp_blood	3650[J/(kg*K)]	3650 J/(kg·K)	Specific Heat Blood
A	7.39e39[1/s]	7.39e39	Frequency factor
dE	2.577e5[J/mol]	2.577e5	Activation energy

Mesh

 The brain tissue is meshed using a triangle swept mesh.

Tissue Damage

The Damage is calculated from the Arrhenius law:

Simulation Results

- During the simulation, the physician can play with the input values to
 Control the thermal ablation during a laser surgery/cancer treatment.
- The heat distribution during the simulation which will help physicians to predict and organize the treatment.
- Such model shows also the impact of the thermal damaged tissues during the simulation.

Apps for physician' use

 Physicians will use their laptops or smart phones to access and run the application remotely.

Conclusion

- Controlled thermal ablation is a big challenge during a laser surgery/cancer treatment. A tool to help physicians predict and organize the treatment will be helpful.
- In this paper, we proposed a simulation model of the LITT with physicians' interaction via Comsol Apps. Such model shows the impact of the heat distribution and thermal damage of the tissue during the simulation.